Skip to main content

On Local Index and the Cocycle Property for Lefschetz Numbers

  • Chapter
Book cover Topics in Operator Theory and Interpolation

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 29))

  • 121 Accesses

Abstract

Let T = (T1,…,T s ) be a commuting s-tuple of elements in the algebra of bounded operators on a complex Banach space. When the (2s –2)-dimensional Hausdorff measure of σ ess (T) is zero we introduce certain Lefschetz number ratios which give the transition functions for a holomorphic line bundle E T on ℂS \ σ ess (T). The Lefschetz numbers themselves define a meromorphic section of E T whose divisor is a complex analytic cycle carried on the Taylor spectrum; its local degree at z has a natural interpretation as a maximal ideal index for (T – z). This index has jumps on the singular locus of the spectrum and sometimes determines the K 1-homology class of T. The correspondence T E T has the property that E TT′ = E TE T′, and if s is even, \( E_{T^t } = - E \) where t denotes transpose. Furthermore, when M is a Hilbert space, σ ess (T) is smooth and K is compact, E T+K = E T . The present note details the construction of the map TE T and its relationship to the fundamental trace form of crypto-integral algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.G. Brown, R.G. Douglas, P.A. Fillmore, Extensions of C* - algebras and K- homology Ann. of Math 105 (1977), 265–324.

    Article  Google Scholar 

  2. L. Boutet de Monvel, On the index of Toeplitz operators of several complex variables, Invent. Math 50, (1979), 249–272.

    Article  Google Scholar 

  3. R.W. Carey and J.D. Pincus, An invariant for certain operator algebras Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 1952–1956.

    Article  Google Scholar 

  4. R.W. Carey and J.D. Pincus, Principal functions, index theory geometric measure theory, and function algebras Integral Eq. and Operator Theory 2 (1979), 441– 483.

    Article  Google Scholar 

  5. R.W. Carey and J.D. Pincus, Operator theory and boundaries of complex curves, preprint 1982.

    Google Scholar 

  6. R.W. Carey and J.D. Pincus,Reciprocity for Fredholm operators, Integral Eq. and Operator Theory 9 (1986), 469–501.

    Article  Google Scholar 

  7. R.W. Carey and J. D. Pincus, Principal currents Integral Eq. and Operator Theory 8 (1985), 614–640.

    Article  Google Scholar 

  8. A. Connes, Non-commutative differential geometry Inst, des Hautes Etudes Sci. Publ., Math. No. 62 (1985), 41–144.

    Google Scholar 

  9. R.E. Curto, Fredholm and invertible n-tuples of operators. The deformation problem, Trans. Amer. Math. Soc., 266 (1981), 129–159.

    Google Scholar 

  10. R.E. Curto Applications of several complex variables to multidimensional spectral theory Indiana University Operator Theory year, Pitman Research Notes, to appear.

    Google Scholar 

  11. R.G. Douglas and D. Voiculescu, On the smoothness of sphere extensions J. Operator Theory 6 (1981), 103–111.

    Google Scholar 

  12. A.S. Fainstein and V.S. Shul’man, Fredholm complexes in Banach spaces (Russian) Funct. Analysis and Appl. 14 (1980), 87–88.

    Google Scholar 

  13. H. Federer, Geometric Measure Theory Die Grundlehren der math. Wissenschaften Band 153, Springer-Verlag, New York, 1969.

    Google Scholar 

  14. P. Griffiths and J. Harris, Principles of Algebraic Geometry Wiley, New York, 1978.

    Google Scholar 

  15. P. Griffiths and J. King, Nevanlinna theory and holomorphic maps between algebraic varieties, Acta Math 130 (1973), 145–220.

    Article  Google Scholar 

  16. V. Guillemin, Toeplitz operators in n-dimensions Integral Eq. and Operator Theory 7 (1984), 145–205.

    Article  Google Scholar 

  17. F.R. Harvey and H.B. Lawson, Jr., On boundaries of complex analytic varieties I, Ann. of Math. 102 (1975), 223–290.

    Article  Google Scholar 

  18. F.R. Harvey Holomorphic chains and their boundaries, Proceedings of Symposia in Pure Mathematics, 30: 1. A.M.S., Providence R.I. (1977), 309–382.

    Google Scholar 

  19. J.W. Helton and R. Howe, Traces of commutators of integral operators Acta Math. 135 (1975) no. 3–4, 271–305.

    Article  Google Scholar 

  20. L. Hormander, The Weyl calculus of pseudo-differential operators, Acta. Math., 32 (1979) 359–443.

    Google Scholar 

  21. J. Janas, Examples of cryptointegral algebras, (Russian) Bull. Acad. Polon. Sei. Ser Sei. Math 27 (1979) no. 9, 695–704.

    Google Scholar 

  22. G.G. Kasparov, Generalized index of elliptic operators Functional Analysis 7 (1973), 82–83.

    Article  Google Scholar 

  23. S. Lang, Algebra 2nd Edition, Addison - Wesley, Menlo Park, CA., 1984.

    Google Scholar 

  24. P. Lelong,Integration sur un ensemble analytique complexes Bull. Soc. Math. France, 85 (1957), 239–262.

    Google Scholar 

  25. R. Levy, Cohomological invariants for essentially commuting systems of operators, (Russian) Funct. Analysis and Appl. 17 (1983), 79–80.

    Google Scholar 

  26. M.S. Livsic, Cay ley-Hamilton theorem, vector bundles and divisors of commuting operators, Integral Eq. and Operator Theory 6 (1983), 250–273.

    Article  Google Scholar 

  27. A. Markoe, Analytic families of differential complexes Journal Funct. Analy. 9 (1972), 181–188.

    Article  Google Scholar 

  28. M. Nagata, Local Rings Krieger, Huntington, N.Y., 1975.

    Google Scholar 

  29. D.G. Northcott, Lessons on Rings Modules and Multiplicities, Cambridge Univ. Press, London, 1968.

    Book  Google Scholar 

  30. J.D. Pincus, On the trace of commutators in the algebra of operators generated by an operator with trace-class self-commutator, August (1972) preprint.

    Google Scholar 

  31. J.D. Pincus, On the integrality of principal functions, Coll. Math. Soc. Janos Bolyai 35 (1980), 967–975.

    Google Scholar 

  32. M. Putinar, Base change and the Fredholm index Integral Eq. and Operator Theory 8 (1985), 674–692.

    Article  Google Scholar 

  33. M. Putinar, Spectral theory and sheaf theory. II, Math. Z. 192 (1986), 473– 490.

    Article  Google Scholar 

  34. M. Putinar and F. - H. Vasilescu, Continuous and analytic invariants for deformations of Fredholm complexes. J. Operator Theory, 9 (1983), 3–26.

    Google Scholar 

  35. B. Shiffman, On the removal of singularities of analytic sets Michigan Math J., 15 (1968), 111–120.

    Article  Google Scholar 

  36. J.L. Taylor, A joint spectrum for several commuting operators J. Functional Analysis (6) (1970), 172–191.

    Google Scholar 

  37. J.L. Taylor, The analytic-functional calculus for several commuting operators, Acta. Math., 125 (1970), 1–38.

    Article  Google Scholar 

  38. H. Upmeier, Index theory for Toeplitz operators on bounded symmetric domains, Bull. A.M.S. 16 (1987), 109–112.

    Article  Google Scholar 

  39. F.-H. Vasilescu, A characterization of the joint spectrum in Hilbert spaces Rev. Roumaine Math. Pures Appl., 32 (1977), 1003–1009.

    Google Scholar 

  40. F.-H. Vasilescu, Stability of the index of a complex of Banach spaces, J. Operator Theory 1 (1979), 187–205.

    Google Scholar 

  41. F.-H. Vasilescu, Fredholm operators and the continuity of the Lefschetz number J. Operator Theory 6 (1981), 143–153.

    Google Scholar 

  42. F.-H. Vasilescu, Analytic Functional Calculus and Spectral Decomposition, Ed. Academei and D. Reidel Co., Bucharest and Dordrecht 1982.

    Google Scholar 

  43. H. Whitney, Complex Analytic Varieties Addison-Wesley, Menlo Park, Ca., 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Carey, R.W., Pincus, J.D. (1988). On Local Index and the Cocycle Property for Lefschetz Numbers. In: Gohberg, I. (eds) Topics in Operator Theory and Interpolation. Operator Theory: Advances and Applications, vol 29. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9162-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9162-2_2

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-1960-1

  • Online ISBN: 978-3-0348-9162-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics