Skip to main content

Restoration of cholinergic circuitry in the hippocampus by foetal grafts

  • Chapter
Central Cholinergic Synaptic Transmission

Part of the book series: Experientia Supplementum ((EXS,volume 57))

  • 125 Accesses

Summary

The pathway from medial septum to hippocampus is one of the major and most well-documented cholinergic connections in the rodent brain. Interruption of this pathway by either direct destruction of the cells of origin in the medial septum or by transection of the fimbria-fornix, the fibre tract along which the septohippocampal axons traverse, results in a virtually complete depletion of cholinergic markers within the hippocampal formation. Previous experiments have shown that grafts of foetal rat septal-diagonal band region placed into the denervated hippocampus can restore acetylcholinesterase (AChE) fibre density to 85–90% of control values (Björklund et al., Acta physiol. scand. Suppl. 522 (1983) 49–58).

More recently, it has been demonstrated using the more specific technique of choline acetyltransferase (ChAT) immunocytochemistry in combination with electron microscopy that septal grafts are also able to restore the cholinergic connectivity at the synaptic level in the dorsal hippocampal formation. However, we have demonstrated that this restoration of both AChE and ChAT fibre density represents a specific mechanism and that the source of the foetal cholinergic neurons is crucial to the extent of reinnervation and pattern of connectivity achieved.

In aged rats, judged as being behaviourally impaired with respect to their spatial memory, there appears to be an intrinsic denervation of the septohippocampal pathway such that the hippocampus is depleted of cholinergic markers. In these cases, transplantation can again restore cholinergic innervation but without the requirement of prior denervation by a fimbria-fornix transection—grafts are placed into the intact hippocampus. Results show that the grafts survive well in the aged, intact hippocampus and are able to ameliorate the behavioural impairments, perhaps by the formation of substantial numbers of cholinergic synapses between the graft and host brain.

In conclusion, therefore, neural grafting of cholinergic neurons of appropriate type and origin is able to reinnervate the hippocampal formation previously denervated either by mechanical transection of the fimbria-fornix or as a result of an age-dependent deterioration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert, E. N., and Das, D. C. (1984) Neocortical transplant in the rat brain: An ultrastructural study. Experienta 40: 294–298.

    Article  Google Scholar 

  • Anderson, J. K., Gibbs, R. B., Salvaterra, P. M., and Cotman, C. W. (1986) Ultrastructural characterisation of identified cholinergic neurons transplanted into the hippocampal formation of the rat. J. comp. Neurol. 249: 279–292.

    Article  Google Scholar 

  • Anderson J. K., Gibbs, R. B., Salvaterra, P. M., and Cotman, C. W. (1986) Ultrastructural characterization of identified cholinergic neurons transplanted into the hippocamplal formation of the of the rat. J. comp. Neurol. 249: 279–292.

    Article  Google Scholar 

  • Arendt, T., Allen, Y., Sinden, J., Schugens, M. M., Marchbanks, R. M., Lantos, P. L., and Gray, J. A. (1988) Cholinergic-rich brain transplants reverse alcohol-induced memory deficits. Nature 323: 448–50.

    Article  Google Scholar 

  • Baisden, R. H., Woodruff, M. L., and Hoover, D. B. (1984) Cholinergic and non-cholinergic septo-hippocampal projections: a double-label horseradish peroxidase-acetylcholinesterase study in the rabbit. Brain Res. 290: 146–151.

    Article  Google Scholar 

  • Bakst, I., and Amaral, D. G. (1984) The distribution of acetylcholinesterase in the hippocampal formation of the monkey. J. comp. Neurol. 225: 344–371.

    Article  Google Scholar 

  • Beebe, B. K., Møllgård, A., Björklund, A., and Stenevi, U. (1979) Ultrastructural evidence of synaptogenesis in the adult rat dentate gyrus from brainstem implants. Brain Res. 167: 391–395.

    Article  Google Scholar 

  • Björklund, A., Segal, M., and Stenevi, U. (1979) Functional reinnervation of rat hippocampus by locus coeruleus implants. Brain Res. 170: 409–426.

    Article  Google Scholar 

  • Björklund, A., Stenevi, U., Schmidt, R. H., Dunnett, S. B., and Gage, F. H. (1983a) Intracerebral grafting of neuronal cell suspensions. I. Introduction and general methods of preparation. Acta physiol. scand. Suppl. 522: 1–8.

    Google Scholar 

  • Bondareff, W. (1980) Changes in synaptic structure affecting neural transmissions in the senescent brain. In: Oota, K., and Makinodan, M. (eds), Proceedings of the Naito International Symposium of Aging. Raven Press, New York.

    Google Scholar 

  • Brito, G. N. O., Davis, B. J., Stopp, L. C., and Stanton, M. E. (1983) Memory and the septohippocampal cholinergic system in the rat. Psychopharmacology 81: 315–320.

    Article  Google Scholar 

  • Chandler, J. P., and Crutcher, K. A. (1983) The septohippocampal projection in the rat: an electron microscopic horseradish peroxidase study. Neuroscience 10: 685–696.

    Article  Google Scholar 

  • Clarke, D. J. (1985) Cholinergic innervation of the rat dentate gyrus: A light and electron microscopial study using a monoclonal antibody to choline acetyltransferase. Brain Res. 360: 349–354.

    Article  Google Scholar 

  • Clarke, D. J., Gage, F. H., and Björklund, A. (1986a) Formation of cholinergic synapses by intrahippocampal septal grafts as revealed by choline acetyltransferase immunocytochemistry. Brain Res. 360: 151–162.

    Article  Google Scholar 

  • Clarke, D. J., Gage, F. H., Nilsson, O. G., and Björklund, A. (1986b) Grafted septal neurones form cholinergic synaptic connections in the dentate gyrus of behaviourally impaired aged rats. J. comp. Neurol. 252: 483–92.

    Article  Google Scholar 

  • Clarke, D. J., Brundin, P., Strecker, R. E., Nilsson, O. G., Björklund, A., and Lindvall, O. (1988a) Human fetal dopamine neurons grafted in a rat model of Parkinson’s Disease: Ultrastructural evidence for synapse formation using tyrosine hydroxylase immunocytochemistry. Exp. Brain Res. 73: 115–126.

    Article  Google Scholar 

  • Clarke, D. J., Dunnett, S. B., Isacson, O., Sirinathsinghji, D. J. S., and Bjorklund, A. (1988) Striatal grafts in rats with unilateral neostriatal lesions—I. Ultrastructural evidence of afferent synaptic inputs from the host nigrostriatal pathway. Neuroscience 24: 791–801.

    Article  Google Scholar 

  • Cotman, C. W., and Nadler, J. V. (1978) Reactive synaptogenesis in the hippocampus. In: Cotman, C. W. (ed.), Neuronal Plasticity. Raven Press, New York, pp. 227–271.

    Google Scholar 

  • Dunnett, S. B., Low, W. C., Iversen, S. D., Steveni, U., and Bjöklund, (1982) Septal transplants restore maze learning in rats with fornix-fimbria lesions. Brain Res. 251: 335–348.

    Article  Google Scholar 

  • Dunnett, S. B., Toniolo, G., Fine, A., Ryan, C. N., Björklund, A., and Iverson, S. D. (1985) Transplantation of embryonic ventral forebrain neurones to the neocortex of rats with lesions of nucleus basalis magnocellularis. II. Sensorimotor and memory effects. Neuroscience 16: 787–797.

    Article  Google Scholar 

  • Dunnett, S. B., Whishaw, I. Q., Bunch, S. T., and Fine A. (1986) Acetylcholine-rich neuronal grafts in the forebrain of rats: Effects of environmental enrichment, neonatal noradrenaline depletion, host transplantation site, and regional source of embryonic donor cells on graft size and acetylcholinesterase-positive fibre outgrowth. Brain Res. 378: 357–373.

    Article  Google Scholar 

  • Fibiger, H. C. (1982) The organization and some projections of cholinergic neurons of the mammalian forebrain. Brain Res. Rev. 4: 327–388.

    Article  Google Scholar 

  • Fischer, W., Wictorin, K., Björklund, A., Williams, L. R., Varon, S., and Gage, F. H. (1987) Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature 329: 65 - 68.

    Article  Google Scholar 

  • Foster, G. A., Schultzberg, M., Björklund, A., Gage, F. H., and Hökfelt, T. (1985) Fate of embryonic mesencephalic and medullary raphe neurons transplanted to the striatum, hippocampus or spinal cord of the adult rat: Analysis of 5-hydroxytryptamine, substance-P and thyrotropine-releasing hormone-immunoreactive cells. In: Bjorklund, A., and Stenevi, U. (eds), Neural Grafting in the Mammalian CNS. Elsevier, Amsterdam, pp. 179–190.

    Google Scholar 

  • Foster, G. A., Schultzberg, M., Gage, F. H., Björklund, A., Hökfelt, T., Cuello, A. C., Verhofstad, A. A. J., and Visser, T. J. (1987) Transmitter expression and morphological development of embryonic medullary and mesencephalic raphe neurons after transplantation to the adult rat central nervous system. II. Grafts to the striatum. Exp. Brain Res. 60: 427–444.

    Google Scholar 

  • Freund, T. F., Bolam, J. P., Björklund, A., Stenevi, U., Dunnett, S. B., Powell, J. F., and Smith, A. D. (1985) Efferent synaptic connections of grafted dopaminergic neurons reinnervating the host neostriatum: A tyrosine hydroxylase immunocytochemical study. J. Neurosci. 5: 603–616.

    Google Scholar 

  • Frotscher, M. (1987) Cholinergic neurons in the rat hippocampus do not compensate for the loss of septohippocampal cholinergic fibers. Neurosci. Lett. 87: 18–22.

    Article  Google Scholar 

  • Frotscher, M., Leranth, Cs. (1985) Cholinergic innervation of the rat hippocampus as revealed by choline acetyltransferase immunocytochemistry. A combined light and electron microscopic study. J. comp. Neurol. 239: 237–246.

    Article  Google Scholar 

  • Gage, F. H., and Björklund, A. (1986a) Cholinergic septal grafts into the hippocampal formation improve spatial learning and memory in aged rats by an atropine sensitive mechanism. J. Neurosci. 17: 89–98.

    Article  Google Scholar 

  • Gage, F. H., and Björklund, A. (1986b) Enhanced graft survival in the hippocampus following selective denervation. Neuroscience 17: 89–98.

    Article  Google Scholar 

  • Gage, F. H., Björklund, A., Stenevi, U., Dunnett, S. B., and Kelly, P. A. T. (1984) Intrahippocampal septal grafts ameliorate learning impairments in aged rats. Science 225: 533–536.

    Article  Google Scholar 

  • Gage, F. H., Dunnett, S. B., Stenevi, U., and Björklund, A. (1983) Intracerebral grafting of neuronal cell suspensions. VIII. Survival and growth of implants of nigral and septal cell suspensions in intact brain of aged rats. Acta physiol. scand. ( Suppl ). 522: 67–75.

    Google Scholar 

  • Gasser, U. E., and Dravid, A. R. (1987) Noradrenergic, serotonergic and cholinergic sprouting in the hippocampus that follow partial or complete transection of the septohippocampal pathway: Contributions of spared inputs. Exp. Neurol. 96: 352–364.

    Article  Google Scholar 

  • Geinisman, Y., Bondareff, W., and Dodge, J. T. (1978) Dendritic atrophy in the dentate gyrus of the senescent rat. Am. J. Anat. 152: 321–330.

    Article  Google Scholar 

  • Gibbs, R. B., Anderson, K., and Cotman, C. W. (1986) Factors affecting innervation in the CNS: Comparison of three cholinergic cell types transplanted to the hippocampus of adult rats. Brain Res. 383: 362–366.

    Article  Google Scholar 

  • Hefti, F., Hartikka, J., Eckenstein, F., Gnahn, H., Henmann R., and Schwab, M. (1985) Nerve growth factor increases choline acetyltransferase but not survival or fiber outgrowth of cultured fetal septal cholinergic neurons. Neuroscience 14: 55–68.

    Article  Google Scholar 

  • Hoff, S. F., Scheff, S. W., Bernardo, L. S., and Cotman, C. W. (1982) Lesion-induced synaptogenesis in the dentate gyrus of aged rats. I. Loss and reacquisition of normal synaptic denisty. J. comp. Neurol. 205: 246–252.

    Article  Google Scholar 

  • Kromer, L. F. (1983) Cholinergic transplants exhibit specificity in reinnervating the adult rodent hippocampus. Soc. Neurosci. Abstr. 9: 372

    Google Scholar 

  • Lewis, E. R., and Cotman, C. W. (1983) Neurotransmitter characteristics of brain grafts: Striatal and septal tissues form the same laminated input to the hippocampus. Neuroscience 8: 57–66.

    Article  Google Scholar 

  • Lippa, A. S., Pelham, R. W., Beer, B., Critchett, D. J., Dean, R. L., and Bartus, R. T. (1980) Brain cholinergic dysfunction and memory in aged rats. Neurobiol. Aging 1: 13–19.

    Article  Google Scholar 

  • Low, W. C., Lewis, P. R., Bunch, S. T., Dunnett, S. B., Thomas, S. R., Iverson, S. D., Björklund, A., and Stenevi, U. (1982) Functional recovery following transplantation of embryonic septal nuclei into adult rats with septohippocampal lesions: The recovery of functions. Nature 300: 260–262.

    Article  Google Scholar 

  • Mahalik, T. J., Finger, T. E., Strömberg, I., and Olsen, L. (1985) Substantia nigra transplants into denervated striatum of the rat: Ultrastructure of graft and host interconnections. J. comp. Neurol. 240: 60–70.

    Article  Google Scholar 

  • Mates, S. L., and Lund, J. S. (1983) Developmental changes in the relationship between type 2 synapses and spiny neurons in the monkey visual cortex. J. comp. Neurol. 221: 98–105.

    Article  Google Scholar 

  • Matsumoto, A., Murakami, S., Arai, Y., and Osanai, M. (1985) Synaptogenesis in the neonatal preoptic area grafted into the aged brain. Brain Res. 347: 363–367.

    Article  Google Scholar 

  • Meek, W. H., Church, R. M., and Oton, D. S. (1984) Hippocampus, time, and memory. Behav. Neurosci. 98: 3–22.

    Article  Google Scholar 

  • Meibach, R. C., and Siegal, A. (1977) Efferent connections of the septal area in the rat: an analysis utilizing retrograde and anterograde transport methods. Brain Res. 119: 1–20.

    Article  Google Scholar 

  • Mellgren, S. I., and Srebro B. (1973) Changes in acetylcholinesterase and distribution of degenerating fibres in the hippocampal region after septal lesion in the rat. Brain Res. 52: 19–35.

    Article  Google Scholar 

  • Nilsson, O. G., Clarke, D. J., Brundin, P., and Björklund, A. (1988) Comparison of growth and reinnervation properties of cholinergic neurons from different brain regions grafted to the hippocampus. J. comp. Neurol. 268: 204–222.

    Article  Google Scholar 

  • Nilsson, O. G., Shapiro, M. L., Gage, F. H., Olton, D. A., and Björklund, A. (1987) Spatial learning and memory following fimbria-fornix transection and grafting of fetal septal neurons to the hippocampus. Exp. Brain Res. 67: 195–215.

    Article  Google Scholar 

  • Nishino, H., Ono, T., Takahashi, J., Kimura, M., Shiosaka, S., Yamasaki, H., Hatanaka, H., and Tohyama, M. (1986) The formation of new neuronal circuit between transplanted dopamine neurons and non-immunoreactive axon terminals in the host rat caudate nucleus. Neurosci. Lett. 64: 13–16.

    Article  Google Scholar 

  • Pallage, V. G., Toniolo, G., Will, B., and Hefti, F. (1986) Long-term effects of nerve growth factor and neural transplants on behavior of rats with medial septal lesions. Brain Res. 386: 197–208.

    Article  Google Scholar 

  • Peschanski, M., and Isacson, O. (1988) Fetal homotypic transplants in the excitotoxically neuron depleted thalamus. 2. Electron microscopy. J. comp. Neurol., in press.

    Google Scholar 

  • Purves, D., and Lichtman, J. W. (1980) Elimination of synapses in the developing nervous system. Science 210: 153–157.

    Article  Google Scholar 

  • Robinson, G. B., and Racine, R. J. (1982) Heterosynaptic interactions between septal and entorhinal inputs to the dentate gyrus: long-term potentiation effects. Brain Res. 249: 162–166.

    Article  Google Scholar 

  • Segal, M., Bjorklund, A., and Gage, F. H. (1895) Transplanted septal neurons make viable cholinergic synapses with a host hippocampus. Brain Res. 336: 302–307.

    Article  Google Scholar 

  • Segal, M., Greenberger, V., and Milgram, H. W. (1987) A functional analysis of connections between grafted septal neurons and a host hippocampus. Prog. Brain Res. 71: 349–357.

    Article  Google Scholar 

  • Sotelo, C., and Alvarado-Mallart, R. M. (1987) Reconstruction of the defective cerebellar circuitry in adult ped mutant mice by Purkinje cell replacement through transplantation of solid embryonic implants. Neuroscience 20: 1–22.

    Article  Google Scholar 

  • Storm-Mathisen, J. (1970) Quantitative histochemistry of acetylcholinesterase in rat hippocampal region correlates with histochemical staining. J. Neurochem. 17: 739–750.

    Article  Google Scholar 

  • Vincent, S. R., and McGeer, E. G. (1981) A substance P projection to the hippocampus. Brain Res. 215: 349–351.

    Article  Google Scholar 

  • Wainer, B. H., Levey, A. I., Rye, D. B., Mesulam, M. M., and Mufson, E. J. (1985) Cholinergic and non-cholinergic septohippocampal pathways. Neurosci. Lett. 54: 45–52.

    Article  Google Scholar 

  • Wheal, H. V., and Miller, J. J. (1980) Pharmacological identification of acetylcholine and glutamate excitatory systems in the dentate gyrus of the rat. Brain Res. 182: 145–155.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Birkhäuser Verlag

About this chapter

Cite this chapter

Clarke, D.J., Björklund, A. (1989). Restoration of cholinergic circuitry in the hippocampus by foetal grafts. In: Frotscher, M., Misgeld, U. (eds) Central Cholinergic Synaptic Transmission. Experientia Supplementum, vol 57. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9138-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9138-7_27

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9922-2

  • Online ISBN: 978-3-0348-9138-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics