Skip to main content

Regulation of de novo methylation

  • Chapter
DNA Methylation

Part of the book series: EXS ((EXS,volume 64))

Abstract

It has become dogma that vertebrate DNA, and indeed the DNA of most animals, contains methylcytosine that is restricted to the dinucleotide MG (where M is 5-methylcytosine). Plants have a higher proportion of DNA cytosines methylated largely because they have additional methylcytosine in the trinucleotide sequence MNG (Belanger and Hepburn, 1990). Not all CG (nor CNG) sequences are methylated and yet those that are, are maintained in the methylated form from cell generation to generation in a tissue specific manner. This maintenance of methylation pattern is believed to be an intrinsic property of the enzyme catalysing the transfer of methyl groups from S-adenosyl methionine (AdoMet) to the DNA; an enzyme known as a DNA-(5-cytosine) methyltransferase or DNA methylase. In other words, the methylase acts on newly synthesized DNA to add a methyl group to cytosines on the daughter strand which are paired with guanines in MG dinucleotide (or MNG trinucleotide) sequences present on the parental strand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

M:

is used to represent methylcytosine when in nucleotide sequences.

AdoMet and AdoHcy:

refer to S-adenosyl methionine and S-adenosyl homocysteine respectively.

References

  • Achten, S., Behn-Krappa, A., JĂĽcker, M., Sprengel, J., Hölker, I., Schmitz, B., Tesch, H., Diehl, V., and Doerfler, W. (1991) Cancer Res. 51, 3702–3709.

    PubMed  CAS  Google Scholar 

  • Adams, R. L. P. (1990a) DNA methylation: the effect of minor bases on DNA-protein interactions. Biochem. J.265, 309–320.

    PubMed  CAS  Google Scholar 

  • Adams, R. L. P. (1990b) Cell culture for biochemists. Elsevier, Amsterdam.

    Google Scholar 

  • Adams, R. L. P., Burdon, R. H., McKinnon, K., and Rinaldi, A. (1983) Simulation of de novo methylation following limited proteolysis of mouse ascites DNA methylase. FEBS Lett. 163, 194–198.

    Article  PubMed  CAS  Google Scholar 

  • Adams, R. L. P., Gardiner, K., Rinaldi, A., Bryans, M., McGarvey, M., and Burdon, R. H. (1986) Mouse ascites DNA methylase: characterisation of size, proteolytic breakdown and nucleotide recognition. Biochim. Biophys. Acta 868, 9–16.

    PubMed  CAS  Google Scholar 

  • Adams, R. L. P., Hill, J., McGarvey, M., and Rinaldi, A. (1989) Mouse DNA methylase; intracellular location and degradation. Cell Biophys. 15, 113–126.

    PubMed  CAS  Google Scholar 

  • Antequera, F., Boyes, J., and Bird, A. (1990) High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell 62, 503–514.

    Article  PubMed  CAS  Google Scholar 

  • Behn-Krappa, A., Hòlker, I., Sandaradura de Silva, U., and Doerfler, W. (1991) Patterns of DNA methylation are indistinguishable in different individuals over a wide range of human DNA sequences. Genomics 11, 1–7.

    CAS  Google Scholar 

  • Belanger, F. C., and Hepburn, A. G. (1990) The evolution of CpNpG methylation in plants. J. Mol. Evol. 30, 26–35.

    Article  CAS  Google Scholar 

  • Bestor, T., Laudano, A., Mattaliano, R., and Ingram, V. (1988) Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. J. Mol. Biol. 203, 971–983.

    Article  PubMed  CAS  Google Scholar 

  • Bestor, T., and Ingram, V. (1985) Growth dependent expression of multiple species of DNA methyltransferase in murine erythroleukaemia cells. Proc. Natl. Acad. Sci. USA 82, 2674–2678.

    Article  PubMed  CAS  Google Scholar 

  • Bolden, A. H., Nalin, C. M., Ward, C. A., Poonian, M. S., McComas, W. W., and Weissbach, A. (1985) DNA methylation: sequences flanking C-G pairs modulate the specificity of the human DNA methylase. Nucl. Acids Res. 13, 3479–3494.

    Article  PubMed  CAS  Google Scholar 

  • Bolden, A. H., Nalin, C. M., Ward, C. A., Poonian, M. S., and Weissbach, A. (1986) Primary DNA sequence determines sites of maintenance and de novo methylation by mammalian DNA methyltransferases. Mol. Cell. Biol. 6, 1135–1140.

    PubMed  CAS  Google Scholar 

  • Brayans, M., Kass, S., Seivwright, C. and Adams, R.L.P. (1992) Vector methylation inhibits transcription from the SV40 early promoter. FEBS letts. in press.

    Google Scholar 

  • Caiafa, P., Reale, A., Allegra, P., Rispoli, M., D’Erme, M., and Strom, R. (1991) Histones and DNA methylation in mammalian chromatin-differential inhibition of in vitro methylation by histone HI. Biochim. Biophys. Acta 1090, 38–42.

    PubMed  CAS  Google Scholar 

  • Campbell, J. L., and Kleckner, N. (1990) E. coli oriC and the dnaA gene promoter are sequestered from dam methyltransferase following the passage of the chromosomal replica-tion fork. Cell 62, 967–979.

    CAS  Google Scholar 

  • Carotti, D., Palitti, F., Mastrantonio, S., Rispoli, M., Strom, R., Amato, A., Campagnari, F., and Whitehead, E. P. (1986) Substrate preferences of human placental DNA methyltransferase investigated with synthetic polydeoxynucleotides. Biochim. Biophys. Acta 866, 135–143.

    PubMed  CAS  Google Scholar 

  • Carotti, D., Palitti, F., Lavia, P., and Strom, R. (1989) In vitro methylation of CpG islands. Nucl. Acids Res. 17, 9219–9229.

    Article  PubMed  CAS  Google Scholar 

  • Cedar, H., and Razin, A. (1990) DNA methylation and development. Biochim. Biophys. Acta 1049; 1–8. Chaillet, J. R., Vogt, T. F., Beier, D. R., and Leder, P. (1991) Parental-specific methylation of an imprinted transgene is established during gametogenesis and progressively changes during embryogenesis. Cell 66, 77–83.

    Google Scholar 

  • Chaillet, J. R., Vogt, T. F., D. R., and Leder, P. (1991) Parental-specific methylation of an imprinted transgene is established during gametogenesis and progressively changes during embryogenesis. Cell 66,77–83

    Article  PubMed  CAS  Google Scholar 

  • Christy, B., and Scangos, G. (1982) Expression of transferred thymidine kinase genes is controlled by methylation. Proc. Natl. Acad. Sci. USA 79, 6299–6303.

    Article  PubMed  CAS  Google Scholar 

  • Davis, R. L., Fuhrer-Krusi, S., and Kucherlapati, R. S. (1982) Modulation of transfected gene expression mediated by changes in chromatin structure. Cell 31, 521–529.

    Article  Google Scholar 

  • Davis, T., Rinaldi, A., Clark, L., and Adams, R. L. P. (1986) Methylation of chromatin in vitro. Biochim. Biophys. Acta 866, 233–241.

    PubMed  CAS  Google Scholar 

  • Davis, T., Kirk, D., Rinaldi, A., Burdon, R. H., and Adams, R. L. P. (1985) Delayed methylation and the matrix bound DNA methylase. Biochem. Biophys. Res. Comm.126, 678–684.

    Article  PubMed  CAS  Google Scholar 

  • Doerfler, W., Toth, M., Kochanek, S., Achten, S., Freisem-Rabien, U., Behn-Krappa, A., and Orend, G. (1990) Eukaryotic DNA methylation: facts and problems. FEBS Lett.268, 329–333.

    Article  PubMed  CAS  Google Scholar 

  • Frank, D., Keshet, I., Shani, M., Levine, A., Razin, A., and Cedar, H. (1991) Demethylation of CpG islands in embryonic cells. Nature (London)351, 239–241.

    Article  CAS  Google Scholar 

  • Giordano, M., Mattachini, M. E., Cella, R., and Pedrali-Noy, G. (1991) Purification and properties of a novel DNA methyl transferase from cultured rice cells. Biochem. Biophys. Res. Comm.177, 711–719.

    CAS  Google Scholar 

  • Hepburn, P. A., and Tisdale, M. J. (1991) Importance of the O6 position of guanine residues in the binding of DNA methylase to DNA. Biochim. Biophys. Acta1088, 341–344.

    PubMed  CAS  Google Scholar 

  • Holliday, R., and Pugh, J. E. (1975) DNA modification mechanisms and gene activity during development. Science187, 226–232.

    Article  PubMed  CAS  Google Scholar 

  • Houlston, C. E., Lindsay, H., and Adams, R. L. P. (1992) DNA substrate specificity of pea DNA methylase (in preparation).

    Google Scholar 

  • Howlett, S. K., and Reik, W. (1991) Methylation levels of maternal and paternal genomes during preimplantation development. Development 113, 119–127.

    PubMed  CAS  Google Scholar 

  • Jähner, D., Stuhlmann, H., Stewart, C. L., Harbers, K., Lohler, J., Simon, I., and Jaenisch, R. (1982) De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature (London) 298, 623–628.

    Article  Google Scholar 

  • Jones, P. A., Wolkowicz, M. J., Rideot, W. M., Gonzales, F. A., Marziasz, C. M., Coetzee, G. A., and Tapscott, S. J. (1990) De novo methylation of the MyoDl CpG island during the establishment of immortal cell lines. Proc. Natl. Acad. Sci. USA 87, 6117–6121.

    Article  PubMed  CAS  Google Scholar 

  • Kruczek, I., and Doerfler, W. (1982) The unmethylated state of the promoter/leader and 5’-regions of integrated adenovirus genes correlates with gene expression. EMBO J., 409–414.

    Google Scholar 

  • Laybourn, P. J., and Kadonaga, J. T. (1991) Role of nucleosomal cores and histone HI in regulation of transcription by RNA polymerase II. Science 254, 238–245.

    Article  PubMed  CAS  Google Scholar 

  • Lyon, M. F. (1991) The quest for the X-inactivation centre. Trends Genet. 7, 69–70.

    PubMed  CAS  Google Scholar 

  • Migeon, B. R. (1990) Insights into X chromosome inactivation from studies of species variation, DNA methylation and replication, and vice versa. Genet. Res. Camb. 56, 91–98.

    Article  CAS  Google Scholar 

  • Monk, M., Adams, R. L. P., and Rinaldi, A. (1991) Decrease in DNA methylase activity during preimplantation development in the mouse. Development 112, 189–192.

    PubMed  CAS  Google Scholar 

  • Monk, M., Boubelik, M., and Lehnert, S. (1987) Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99, 371–382.

    PubMed  CAS  Google Scholar 

  • Orend, G., Kuhlmann, I., and Doerfler, W. (1991) Spreading of DNA methylation across integrated foreign (adenovirus type 12) genomes in mammalian cells. J. Virol. 65, 4301–4308.

    PubMed  CAS  Google Scholar 

  • Palitti, F., Carotti, D., Grunwald, S., Rispoli, M., Whitehead, E. P., Salerno, C., Strom, R., and Drahovsky, D. (1987) Inactivation of de novo DNA methyltransferase activity by high concentrations of double-stranded DNA. Biochim. Biophys. Acta 919, 292–296.

    Google Scholar 

  • Pellicer, A., Robins, D., Wold, B., Sweet, R., Jackson, J., Lowry, I., Roberts, J. M., Sim, G. K., Silverton, S., and Axel, R. (1980) Altered genotype and phenotype by DNA-medi- ated gene transfer. Science 209, 1414–1422.

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer, G. P., Spiess, E., GrĂĽnwald, S., Boehm, T. L. J., and Drahovsky, D. (1985a) Mouse DNA-cytosine-5-methyltransferase: sequence specificity of the methylation reaction and electron microscopy of enzyme-DNA complexes. EMBO J. 4, 2879–2884.

    PubMed  CAS  Google Scholar 

  • Pfeifer, G. P., GrĂĽnwald, S., Palitti, F., Kaul, S., Boehm, T. L. J., Hirth, H.-P., and Drahovsky, D. (1985b) Purification and characterisation of mammalian DNA methyltrans- ferases by use of monoclonal antibodies. J. Biol. Chem. 260, 13787–13793.

    PubMed  CAS  Google Scholar 

  • Pfeifer, G. P., Tanguay, R. L., Steigerwald, S. D., and Riggs, A. D. (1990a) In vivo footprint and methylation analysis by PCR-aided genomic sequencing: comparison of active and inactive X chromosomal DNA at the CpG island and promoter of human PGK-1. Genes Develop. 4, 1277–1287.

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer, G. P., Steigerwald, S. D., Hansen, R. S., Gartier, S. M., and Riggs, A. D. (1990b) Polymerase chain reaction-aided genomic sequencing of an X chromosome-linked CpG island: methylation patterns suggest clonal inheritance, CpG site autonomy, and an explanation of activity state stability. Proc. Natl. Acad. Sci. USA 87, 8252–8256.

    Article  PubMed  CAS  Google Scholar 

  • Rubin and Modrich (1977) ÂŁcoRI methylase: physical and catalytic properties of the homogeneous enzyme. J. Biol. Chem. 252, 7265–7272.

    Article  Google Scholar 

  • Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning, 2nd edn. Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Santi, D. V., Garrett, C. E., and Barr, P. J. (1983) On the mechanisms of inhibition of DNA-cytosine methyltransferases by cytosine analogs. Cell 33, 9–10.

    Article  PubMed  CAS  Google Scholar 

  • Santi, D. V., Norment, A., and Garrett, C. E. (1984) Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc. Natl. Acad. Sci. USA 81, 6993–6997.

    Article  PubMed  CAS  Google Scholar 

  • Simon, D., Grunert, F., Acken, U. V., Döring, H. P., and Kröger, H. (1978) DNA-methylase from regenerating rat liver: purification and characterisation. Nucleic Acids Res. 5, 2153–2167.

    Article  PubMed  CAS  Google Scholar 

  • Simon, D., Grunert, F., Kroger, H., and Grassman, A. (1980) Dinucleotide specificity of rat liver DNA methylase. Eur. J. Cell Biol.22, 33.

    Google Scholar 

  • Smith, S. S., Kan, J. L. C., Baker, D. J., Kaplan, B. E., and Dembek, P. (1991) Recognition of unusual DNA structures by human DNA(cytosine-5)methyltransferase. J. Mol. Biol.217, 39 - 51.

    Article  PubMed  CAS  Google Scholar 

  • Stein, R., Razin, A., and Cedar, H. (1982) In vitro methylation of the hamster adenosine phosphoribosyltransferase gene inhibits its expression in mouse cells. Proc. Natl. Acad. Sci. USA 79, 3418–3422.

    Article  PubMed  CAS  Google Scholar 

  • Szyf, M., Tanigawa, G., and McArthy, P. L. (1990) A DNA signal from the Thy-l gene defines de novo methylation patterns in embryonic stem cells. Mol. Cell. Biol. 10, 4396–4400.

    PubMed  CAS  Google Scholar 

  • Szyf, M., Bozo vie, U., and Tanigawa, G. (1991) Growth regulation of mouse DNA methyl-transferase gene-expression. J. Biol. Chem. 266, 10027–10030.

    PubMed  CAS  Google Scholar 

  • Theiss, G., Schleicher, R., Schimpff-Weiland, G., and Follmann, H. (1987) DNA methylation in wheat: purification and properties of DNA methyltransferase. Eur. J. Biochem. 167, 89–96.

    Article  PubMed  CAS  Google Scholar 

  • Toth, M., MĂĽller, U., and Doerfler, W. (1990) Establishment of de novo DNA methylation patterns. J. Mol. Biol. 214, 673–683.

    Article  PubMed  CAS  Google Scholar 

  • Vaccaro, M., Pawlak, A., and Jost, J.-P. (1990) Positive and negative regulatory elements of chicken vitellogenin II gene characterized by in vitro transcription competition assays in a homologous system. Proc. Natl. Acad. Sci. USA 87, 3047–3051.

    Article  PubMed  CAS  Google Scholar 

  • Ward, C, Bolden, A., Nalin, C. M., and Weissbach, A. (1987) In vitro methylation of the 5’-flanking regions of the mouse ?-globin gene. J. Biol. Chem. 262, 11057–11063.

    PubMed  CAS  Google Scholar 

  • Wigler, M., Levy, D., and Perucho, M. (1981) The somatic replication of DNA methylation. Cell 24, 33–40.

    Article  PubMed  CAS  Google Scholar 

  • Woodcock, D. M., Crowther, P. J., and Diver, W. P. (1987) The majority of methylated deoxycytidines in human DNA are not in the CpG dinucleotide. Biochem. Biophys. Res. Commun. 145, 888–894.

    CAS  Google Scholar 

  • Yesufu, H. M. I., Hanley, A., Rinaldi, A., and Adams, R. L. P. (1991) DNA methylase from Pisum sativum.Biochem. J. 273, 469–475.

    PubMed  CAS  Google Scholar 

  • Zucker, K. E., Riggs, A. D., and Smith, S. S. (1985) Purification of human DNA(cytosine-5-)- methyltransferase. J. Cell. Biochem.29, 337–349.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Adams, R.L.P. et al. (1993). Regulation of de novo methylation. In: Jost, JP., Saluz, HP. (eds) DNA Methylation. EXS, vol 64. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9118-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9118-9_6

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9915-4

  • Online ISBN: 978-3-0348-9118-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics