Skip to main content

DNA Methylation, chromatin structure and the regulation of gene expression

  • Chapter
DNA Methylation

Part of the book series: EXS ((EXS,volume 64))

Abstract

It is still not clear how eukaryotic cells regulate gene expression during differentiation and in the differentiated state. There is increasing experimental evidence that this requires a wide spectrum of different cis- and trans-acting elements (for a review, see Wasylyk, 1988). One of the cis-functional elements, crucial for gene activation, is the change in the DNA methylation pattern. In mammalian cells methylation occurs exclusively at the cytosine residue in the CpG dinucleotide sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Almer, A., Rudolph, H., Hinnen, A., and Horz, W. (1986) Removal of positioned nucleosomes from the yeast PH05 promoter upon PH05 induction releases additional upstream activating DNA elements. EMBO J. 5, 2689–2696.

    PubMed  CAS  Google Scholar 

  • Ben-Hattar, J., and Jiricny, J. (1988) Methylation of single CpG dinucleotides within a promoter element of the herpes simplex virus tk gene reduces its transcription in vivo. Gene 65, 219–227.

    Article  PubMed  CAS  Google Scholar 

  • Bestor, T. H., and Ingram, V. M. (1983) Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA. Proc. Natl. Acad. Sci. USA 80, 5559–5563.

    Article  PubMed  CAS  Google Scholar 

  • Boyes, J., and Bird, A. (1991) DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 64, 1123–1134.

    Article  PubMed  CAS  Google Scholar 

  • Buschhausen, G., Graessmann, M., and Graessmann, A. (1985) Inhibition of herpes simplex thymidine kinase gene expression by DNA methylation is an indirect effect. Nucl. Acids Res. 13, 5503–5513.

    Article  PubMed  CAS  Google Scholar 

  • Buschhausen, G., Wittig, B., Graessmann, M., and Graessmann, A. (1987) Chromatin structure is required to block transcription of the methylated herpes simplex virus thymidine kinase gene. Proc. Natl. Acad. Sci. USA 84, 1177–1181.

    Article  CAS  Google Scholar 

  • Cisek, L. J., and Corden, J. L. (1989) Phosphorylation of RNA polymerase by the murine homologue of the cell-cycle control protein cdc 2. Nature 339, 679–684.

    Article  PubMed  CAS  Google Scholar 

  • Conconi, A., Widmer, R. M., Koller, T., and Sogo, J. M. (1989) Two different chromatin structures coexist in ribosomal RNA genes throughout the cell cycle. Cell 57, 753–761.

    Article  PubMed  CAS  Google Scholar 

  • Deobagkar, D. D., Liebler, M., Graessmann, M., and Graessmann, A. (1990) Hemimethylation of DNA prevents chromatin expression. Proc. Natl. Acad. Sei. USA 87, 1691–1695.

    Article  CAS  Google Scholar 

  • Dörfler, W. (1983) DNA methylation and gene activity. Ann. Rev. Biochem. 52, 93–124.

    Article  Google Scholar 

  • Götz, F., Schulze-Forster, K., Wagner, H., Kröger, H., and Simon, D. (1990) Transcription inhibition of SV40 by in vitro DNA methylation. Biochim. Biophy. Acta 1087, 323–329.

    Google Scholar 

  • Graessmann, M., and Graessmann, A. (1983) Microinjection of tissue culture cells. Methods Enzymol. 101, 482–492.

    Article  PubMed  CAS  Google Scholar 

  • Graessmann, A., Bumke-Vogt, C., Buschhaussen, G., Bauer, M., and Graessmann, M. (1985) SV40 chromatin structure is not essential for viral gene expression. FEBS Lett. 179, 41–45.

    Article  PubMed  CAS  Google Scholar 

  • Graessmann, M., Graessmann, A., Wagner, H., Werner, E., and Simon, D. (1983) Complete DNA methylation does not prevent polyoma and simian virus 40 virus early gene expression. Proc. Natl. Acad. Sei. USA 80, 6470–6474.

    Article  CAS  Google Scholar 

  • Grunstein, M. (1990) Nucleosomes: regulators of transcription. TIG 6, 395–400.

    Article  PubMed  CAS  Google Scholar 

  • Höller, M., Westin, G., Jiricny, J., and Schaffner, W. (1988) Spl transcription factor binds DNA and activates transcription even when the binding site is CpG methylated. Genes & Develop. 2, 1127–1135.

    Article  Google Scholar 

  • Jones, P. A. (1985) Altering gene expression with 5-azacytidine. Cell 40, 485 - 486.

    Article  PubMed  CAS  Google Scholar 

  • Khan, R., Zhang, X. Y., Supakar, P. C., Ehrlich, K. C., and Ehrlich, M. (1988) Human methylated DNA-binding protein. Determinants of a pBR 322 recognition site. J. Biol. Chem. 263, 14374–14383.

    PubMed  CAS  Google Scholar 

  • Keshet, I., Lieman-Hurwitz, J., and Cedar, H. (1986) DNA methylation affects the formation of active chromatin. Cell 44, 535–543.

    Article  PubMed  CAS  Google Scholar 

  • Kovesdi, I., Reichel, R., and Nevins, J. R. (1987) Role of an adenovirus E2 promoter binding factor in ElA-mediated coordinate gene control. Proc. Natl. Acad. Sei. USA 84, 2180–2184.

    Article  CAS  Google Scholar 

  • Lee, J. M., and Greenleaf, A. L. (1989) A protein kinase that phosphorylates the C-terminal repeat domain of the largest subunit of RNA polymerase II. Proc. Natl. Acad. Sei. USA 86, 3624–3628.

    Article  CAS  Google Scholar 

  • Lorch, Y., LaPointe, J. W., and Kornberg, R. D. (1987) Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. Cell 49, 203–210.

    Article  PubMed  CAS  Google Scholar 

  • Rougvie, A. E., and Lis, J. T. (1988) The RNA polymerase II molecule at the 5’ end of the uninduced hsp 70 gene of D. melanogaster is transcriptionally engaged. Cell 54, 795 — 804.

    Article  PubMed  CAS  Google Scholar 

  • Reines, D., Chamberlin, M. J., and Kane, C. M. (1989) Transcription elongation factor Sil (TFIIS) enables RNA polymerase II to elongate through a block to transcription in a human gene in vitro. J. Biol. Chem. 264, 10799–10809.

    PubMed  CAS  Google Scholar 

  • Spencer, C. A., and Groudine, M. (1990) Transcription elongation and eukaryotic gene regulation. Oncogene 5, 777–785.

    PubMed  CAS  Google Scholar 

  • Sandberg, G., Guhl, E., Graessmann, M., and Graessmann, A. (1991) After microinjection hemimethylated DNA is converted into symmetrically methylated DNA before DNA replication. FEBS Lett. 283, 247–250.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, K., Appella, E., and Jay, G. (1983) Developmental activation of the H-2K gene is correlated with an increase in DNA methylation. Cell 35, 457–465.

    Article  PubMed  CAS  Google Scholar 

  • Thoma, F. (1991) Structural changes in nucleosomes during transcription: strip, split or flip? TIG 7, 175–177.

    PubMed  CAS  Google Scholar 

  • Waalwijk, C., and Flavell, R. A. (1978) Mspl, an isoschizomer of Hpall which cleaves both unmethylated and methylated Hpall sites. Nucl. Acids Res. 5, 3231–3236.

    Article  PubMed  CAS  Google Scholar 

  • Wasylyk, B. (1988) Enhancers and transcription factors in the control of gene expression. Biochim. Biophy. Acta 951, 17–35.

    CAS  Google Scholar 

  • Watt, F., and Molloy, P. L. (1988) Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes & Develop. 2, 1136–1143.

    Article  CAS  Google Scholar 

  • Wigler, M., Levy, D., and Perucho, M. (1981) The somatic replication of DNA methylation. Cell 24, 33–40.

    Article  PubMed  CAS  Google Scholar 

  • Weintraub, H., and Groudine, M. (1976) Chromosomal subunits in active genes have an altered conformation. Globin genes are digested by deoxyribonuclease I in red blood cell nuclei but not in fibroblast nuclei. Science 193, 848–856.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Graessmann, M., Graessmann, A. (1993). DNA Methylation, chromatin structure and the regulation of gene expression. In: Jost, JP., Saluz, HP. (eds) DNA Methylation. EXS, vol 64. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9118-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9118-9_18

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9915-4

  • Online ISBN: 978-3-0348-9118-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics