Free Radical Theory Of Aging

  • D. Harman
Part of the Molecular and Cell Biology Updates book series (MCBU)


Aging is the accumulation of changes responsible for both the sequential alterations that accompany advancing age and the associated progressive increases in the chance of disease and death. The production of these changes can be attributed to the environment and disease and to an inborn aging process (es). Past improvements in general living conditions have decreased the chances for death so that they are now near limiting values in the developed countries. In these countries the aging process is the major cause of disease and death after about age 28. The free radical theory of aging postulates that aging changes are caused by free radical reactions. Support for this theory is extensive; it includes: 1) studies on the origin and evolution of life, 2) studies of the effect of ionizing radiation on living things, 3) dietary manipulation of endogenous free radical reactions, 4) the plausible explanation it provides for aging phenomena, and 5) the growing number of studies that implicate free radical reactions in the pathogenesis of specific diseases. On the basis of present data the healthy active life span may be increased by 5-10 or more years by keeping body weight down, at a level compatible with a sense of well-being while ingesting diets adequate in essential nutrients but designed to minimize random free radical reactions in the body.


Life Span Xanthine Oxidase Butylate Hydroxy Toluene Free Radical Reaction Average Life Expectancy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adelman, R., Saul, R. L., and Ames, B.N. (1988) Proc. Natl. Acad. Sci., USA,85: 2706–2708.CrossRefGoogle Scholar
  2. Altman, K.I., Gerber, G. B., and Okada, S.A. (1990) Radiation Chemistry, Vol. 1 and 2, Acad. Press, New York.Google Scholar
  3. Altman, K.I., Gerber, G. B., and Okada, S.A. (1990) Radiation Chemistry, Vol. 1 and 2, Acad. Press, New York.Google Scholar
  4. Barden, B., and Brizzee, K.R. (1987) The histochemistry of lipofuscin andneuromelanin. In Advances in Biochemistry, Vol.64, Advances in Age Pigment Research., Tatoro, E. H., Glees, P., and Pisanti, F. A., Eds., Pergaman Press, Oxford, 339–392.Google Scholar
  5. Buchan, T.W., Henderson, W.K., Walker, D E., Symington, T., and McNeil, I.H. (1960) Health Bull. Edinburgh18 3.Google Scholar
  6. Bugiani, O., Giaccone, G., Frangione, B., Ghetti, B., and Taagliavini, F. (1989) Neurosci. Lett.103263–268.CrossRefGoogle Scholar
  7. Chance, B., Sies, H., and Boveris, A. (1979) Physiol. Rev.59527–605.Google Scholar
  8. Chiu, Y.J.D., and Richardson, A. (1980) Exper. Gerontol.15511–517.CrossRefGoogle Scholar
  9. Clapp, N.K., Satterfield, L.C., and Bowles, N.D. (1979) J. Geront.34497–501.Google Scholar
  10. Clarke, R.C., Daly, L., Robinson, K., Naughten, E., Cahalane, S., Fowler, B., and Graham, I. (1991) N. Eng. J. Med.3241149–1155.CrossRefGoogle Scholar
  11. Comfort, A. (1971) Nature229 254–255.CrossRefGoogle Scholar
  12. Comfort, A. (1979) Elsevier, New York, 3rd Ed., pp. 81–86.Google Scholar
  13. Cybulsky, M.I., and Gimbrone, Jr., M.A. (1991) Science251 788–791.CrossRefGoogle Scholar
  14. Diplock, A.T. (1991) Amer. J. Clin. Nutr.53 Suppl. 1, 189S–193S.Google Scholar
  15. Dublin, L.E., Lotha, A.J., and Spiegel, M. (1949) Length of Life. Ronald Press, New York.Google Scholar
  16. Dunn, J.A., and McChance, D.R., Thrope, S.R.. Lyons, T.J., and Baynes, J.W. (1991) Biochemistry30 1205–1210.CrossRefGoogle Scholar
  17. Editorial, Atherosclerosis goes to the wall (1992) Lancet339 647–648.Google Scholar
  18. Emanuel, N.M. (1976) Quart. Rev. Biophys.9 283–308.CrossRefGoogle Scholar
  19. Emanual, N.M., Duburs, G., Obukhov, L.K., and Uldrikis, J. (1981) Chem. Abst.94 9632a.Google Scholar
  20. Friend, S.H., Dryja, T.P., and Weinberg, R.A. (1988) New Eng. J. Med.318 618–622.CrossRefGoogle Scholar
  21. Fries, J.F. (1980) N. Engl. J. Med.303 130–135.CrossRefGoogle Scholar
  22. Fuster, V., Badimon, L., Badimon, J. J., and Chesebro, J. H. (1992) New Engl. J. Med.326 242–250.CrossRefGoogle Scholar
  23. Fuster, V., Badimon, L., Badimon, J. J., and Chesebro, J. H. (1992) New Engl. J. Med.326 310–318.CrossRefGoogle Scholar
  24. Gerrity, R.G. (1981) Amer. J. Pathol.103 181-.Google Scholar
  25. Gey, K.F., Pusha, P., Jordan, P., and Moser, U.K. (1991) Amer. J. Clin. Nutr.53(Suppl. 1), 326S–334S.Google Scholar
  26. Glenner, G.G. (1980) N. Engl. J. Med.302 1283–1233.Google Scholar
  27. Gottschalk, G., and Andreesen, J. R. (1979). In International Review of Biochemistry, Microbiol. Biochemistry, Vol. 2, Quale, J.R., Ed., University Park Press, Baltimore, pp. 85–115.Google Scholar
  28. Halliwell, B., and Gutteridge, J.M.C. (1989) 2nd Edition, Clarendon Press, pp. 418–419, Oxford, England.Google Scholar
  29. Harker, L.A., Ross, R., Slichter, S. J., and Scott, C.R. (1976) J. Cl in. Invest.58 731–741.CrossRefGoogle Scholar
  30. Harman, D. (1956) J. Gerontol.11 298–300.Google Scholar
  31. Harman, D. (1957) J. Geront.12 199–202.Google Scholar
  32. Harman, D. (1960) J. Gerontol.15 38–40.Google Scholar
  33. Harman, D. (1962) Rad. Res.16 753–763.CrossRefGoogle Scholar
  34. Harman, D. (1968) J. Gerontol.23 476–482.Google Scholar
  35. Harman, D. (1971) J. Geront.26 451–457.Google Scholar
  36. Harman, D. (1972) J. Amer. Geriatrics Soc.20 145–147.Google Scholar
  37. Harman, D., Eddy, D.E., and Noffsinger, J. (1976) J. Amer. Geriat. Soc.24 203–210.Google Scholar
  38. Harman, D., Heidrick, M.L., and Eddy, D.E. (1977) J. Amer. Geriat. Soc.25 400–407.Google Scholar
  39. Harman, D. (1978) Age1 145–152.CrossRefGoogle Scholar
  40. Harman, D., and Eddy, D.E. (1979) Age2 109–122.CrossRefGoogle Scholar
  41. Harman, D. (1980) Age3 64–73.CrossRefGoogle Scholar
  42. Harman, D. (1981) Proc. Natl. Acad. Sci. USA78 7124–7128.CrossRefGoogle Scholar
  43. Harman, D. (1983) Age6 86–94.CrossRefGoogle Scholar
  44. Harman, D. (1984) Age7 111–131.CrossRefGoogle Scholar
  45. Harman, D. (1986) Free radical theory of aging: Role of free radicals in the origination and evolution of life, aging, and disease processes. In Johnson, Jr., J.E., Walford, R., Harman, D., and Miquel, J. eds., Liss, New York, pp. 3–49.Google Scholar
  46. Harman, D. (1991) Proc. Natl. Acad. Sci. USA88 5360–5363.CrossRefGoogle Scholar
  47. Harman, D. (1992) Free radical theory of aging: history. In Free Radicals and Aging, Emerit, I., and Chance, B., Eds., Birkhauser, Basel, in press.Google Scholar
  48. Heidrick, M. L., Hendricks, L.C., and Cook, D. E. (1984) Mech. Ageing and Dev.27 341–358.CrossRefGoogle Scholar
  49. Hind, C.R.K., Caspi, D., Collins, P.M., and Baltz, M.L. (1984) Lancet II 376–378.CrossRefGoogle Scholar
  50. Hollstein, M., Sidransky, D., Vogelstein, B., and Harris, C.C. (1991) Science253 49–53.CrossRefGoogle Scholar
  51. Jacob, H.S., Craddock, P.R., Hammerschmidt, D.E., and Moldow, C.F. (1980) N. Eng. J. Med.302 789–794.CrossRefGoogle Scholar
  52. Jones, H.R. (1955). In Birren, J. E. ed. Handbook of Aging and the Individual, Chicago Univ. Press, Chicago, IL, pp. 333–363.Google Scholar
  53. Katusic, Z.S., and Vanhoutte, P.M. (1989) Amer. J. Physiol.297 H33–H37.Google Scholar
  54. Kay, M.M.B., and Makinodan, T. (1976) Clin. Immunol. Immunopathol.6 394–413.CrossRefGoogle Scholar
  55. Kohn, R.R. (1985) Aging and Age-related diseases: normal processes. In Johnson, H.A. ed. Relation Between Normal Aging and Disease, Raven Press, New York, pp. 1–44.Google Scholar
  56. Kohn, R. R. (1971) J. Geront.26 378–380.Google Scholar
  57. Leto, S., Yiengst, M. J, and Barrows, Jr., C. H. (1970) J. Geront.25 4–8.Google Scholar
  58. Linder, A., Charra, B., Sherrard, D.J., and Scribner, A.H. (1974) N. Eng. J. Med.209 697–701.CrossRefGoogle Scholar
  59. Loach, P.A., and Hales, B.J. (1976) Free radicals in photosynthesis. In Free Radicals in Biology, Pryor, W.A., Ed., Academic Press, New York, pp. 199–137Google Scholar
  60. Luc, G., and Fruckart, J.-C.(1991) Amer. J. Clin. Nutr. 53 (Suppl. 1) 206S–209S.Google Scholar
  61. Manger, W.M., and Page, I.H. (1982) An overview of current concepts regarding the pathogenesis and pathophysiology of hypertension. In Arterial Hypertension, Rosenthal, J., Ed., Springer-Verlag, New York, pp. 1.Google Scholar
  62. Masoro, E. J., Yu, B. P., and Bertrand, H.A. (1982) Proc. Natl. Acad. Sci. USA79 4239–4241.CrossRefGoogle Scholar
  63. McCord, J.M., and Fridovich, I. (1982) Lipids17 331–337.CrossRefGoogle Scholar
  64. McCready, R.A., Hyde, G.L., Bivins, B.A., Mattingly, S.S., and Griffen, Jr., W. O. (1983) Surgery93 306–312.Google Scholar
  65. Moore, J.A., Noiva, R., and Wells, L. C. (1984) Clin. Chem.30 1171–1173.Google Scholar
  66. Nakazono, K., Watanabe, N., Matsumo, K., Sasaki, J., and Sato, T. (1991) Proc. Natl. Acad. Sci. USA88 10045–10048.CrossRefGoogle Scholar
  67. National Center for Health Statistics (1988) Vital Statistics of the United States 1985. (U.S. Dept. Health Human Serv., Hyattsville, MD), PHS Publ. No. 88-1104, Life Tables, Vol. 2, Sect. 6 p. 9.Google Scholar
  68. National Center for Health Statistics (1989). Annual Summary of Births, Marriages, Divorces, and Deaths: United States 1988. Monthly Vital Statistics 37: No. 13, Hyattsville, MD (U.S. Dept. Health Human Serv.) PHS Publ. No. 89-1120, p. 19.Google Scholar
  69. Nohl, H., and Hegner, D. (1978a) European J. Biochem.82 863–867.CrossRefGoogle Scholar
  70. Nohl, H., Breuninger, V., and Hegner, D. (1978b) European J. Biochem.90 385–390.CrossRefGoogle Scholar
  71. Noy, N., Schwartz, H., and Gafni, A. (1985) Mech. Ageing and Dev.29 63–69.CrossRefGoogle Scholar
  72. Office Federal de la Statistique (1988) Suisse - Table de Mortalite 1986–1987. Swiss Government, Berne, Switzerland..Google Scholar
  73. Olshansky, S.J., Carnes, B.A. and Cassel, C. (1990) Science250 634–640.CrossRefGoogle Scholar
  74. Oster, K.A. (1971) Amer. J. Clin. Res.2 30–35.Google Scholar
  75. Panza, J.A., Quyyumi, A.A., Brush, Jr., J.E., and Epstein, S.E. (1990) New Engl. J. Med.323 22–27.CrossRefGoogle Scholar
  76. Perez-Campo, R., Lopez-Torres, M., Paton, D., Sequeros, E., and Barja de Quiroga, G. (1990) Mech. Ageing and Dev.56 281–292.CrossRefGoogle Scholar
  77. Rao, G., Xia, E., and Richardson, A. (1990) Mech. Ageing and Dev.53 49–60.CrossRefGoogle Scholar
  78. Reaven, P.D., Parthasarathy, S., Beltz, W.F. and Witztum, J.L. (1992)Arterioscler. Thromb.12 312–324.CrossRefGoogle Scholar
  79. Richter, C., Park, J.W., and Ames, B.N. (1988) Proc. Natl. Acad. Sci. USA 85 6465–6467.CrossRefGoogle Scholar
  80. Riemersma, R.A., Wood, D.A., MacIntyre, C.C.A., Elton, R.A., Gey, K.F., and Oliver, M.F. (1991) Lancet337 1–5.CrossRefGoogle Scholar
  81. Rothstein, M. (1986) Chem. Eng. News64(32), 26.CrossRefGoogle Scholar
  82. Sagai, M., and Ichinose, T. (1980) Life Sciences27 731–738.CrossRefGoogle Scholar
  83. Schneider, E.L. (1987) Theories of aging: A perspective. In Modern Biological Theories of Aging, eds. Warner, M.R., Butler, R.N., Sprott, R.L. and Schneider, E., Raven Press, pp. 1–4.Google Scholar
  84. Selby, J.V., Friedman, G.D., and Quesenberry, Jr., C.P. (1990) Amer. J. Epidemiol.131 1017–1027.Google Scholar
  85. Selwign, A.P. (1983) Lancet2 152–154.CrossRefGoogle Scholar
  86. Silberberg, R.S., Jarrett, S.R., and Silberberg, M. (1962) J. Gerontol.17 239–244.Google Scholar
  87. Slater, T.F., and Block, G., eds. (1991) Antioxidants Vitamins and -Carotene in Disease Prevention. Amer. J. Clin. Nutr. 53 (Suppl. 1), 189S–396S.Google Scholar
  88. Sohal, R.S., Svensson, I., Sohal, B.H, and Brunk, W.T. (1989) Mech. Ageing and Dev.49 129–135.CrossRefGoogle Scholar
  89. Sohal, R.S., Arnold, L.L., and Orr, W.C. (1990a) Mech. Ageing and56 223–235.CrossRefGoogle Scholar
  90. Sohal, R. S., Arnold, L.A, and Sohal, B. H. (1990b) Free Rad. Biol. and Med.10 495–500.CrossRefGoogle Scholar
  91. Sohal, R.S., and Sohal, B.H. (1991) Mech. Ageing and Dev.57 287–202.Google Scholar
  92. Stadtman, E. R. (1990) Free Rad. Biol. and Med.9 315–325.CrossRefGoogle Scholar
  93. Steinberg, D., and Witztum, J.L. (1990) JAMA264 3047–3052.CrossRefGoogle Scholar
  94. Stohs, S. J., Lawson, T.A., Anderson, L., and Bueding, E. (1986) Mech. Ageing and Dev.37 137–145.CrossRefGoogle Scholar
  95. Sveriges officiella statistic (1988). Statistiska centralbyran, Stockholm, Sweden, pp. 114 – 115.Google Scholar
  96. Befolknings-forandringar (1987).Statistiska centralbyran, Stockholm, Sweden, pp. 114 – 115.Google Scholar
  97. Upton, A.C. (1977) Pathobiology. In Finch, C.E., and Hayf lick, L., eds. The Biology of Aging, Von Nostrand Reinhold, New York, pp. 513–535.Google Scholar
  98. Vijg, J. (1990) Aging2 227–229.Google Scholar
  99. Wald, N.J., Boreham, J., Hayward, J. L., and Bulbrook, R.D. (1984) British J. of Cancer49 321–324.CrossRefGoogle Scholar
  100. Wolff, S.P., Jiang, Z. Y., and Hunt, J. V. (1991) Free Rad. Biol. and Med.10 339–352.CrossRefGoogle Scholar
  101. Woodhall, B., and Joblon, S. (1957) Geriatrics12 586–591.Google Scholar
  102. Yu, B. P., Masoro, E. J., Murata, I., Bertrand, H. A., and Lynd, F. T. (1982) J. Geront.37 130–141.Google Scholar
  103. Zachariah, P. K., Sheps, S.G., Bailey, K. R., Wiltgen, C. M., and Moore, A. G. (1991) JAMA265 1414–1417.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1993

Authors and Affiliations

  • D. Harman
    • 1
  1. 1.University of Nebraska College of MedicineOmahaUSA

Personalised recommendations