Abstract
This paper will describe some recent developments in an area where combinatorics and complexity theory on the one hand, and geometry and topology on the other, have interacted in several fruitful ways. By a subspace arrangement we mean a finite collection of affine subspaces in the Euclidean space ℝn. There is a long tradition of work on hyperplane arrangements, i.e., concerning subspaces of codimension 1. Here, however, the emphasis will be entirely on arrangements of subspaces of arbitrary dimensions, about which much less is known.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
M. Aigner, Combinatorial Theory, Springer-Verlag, Grundlehren 234, 1979.
V. I. Arnold, The cohomology ring of the colored braid group, Mat. Zametki 5 (1969), 227–231. (Transl. Mathematical Notes 5 (1969), 138–140.)
V. I. Arnold, On some topological invariants of algebraic functions I, Trudy Moskov. Mat. Obšč. 21 (1970), 27–46; (Transl.: Trans. Moscow Math. Soc. 21 (1970), 30–52.)
V. I. Arnold, The spaces of functions with mild singularities, Funkts. Anal. i Prilozh. 23 (1989), 1–10. (Transl: Functional Anal Appl. 23 (1989).)
V. I. Arnold and O. A. Oleinik, Topology of real algebraic varieties, Vestmk Moskov. Univ. Ser. I Mat. Mech. 34 (1979), 7–17. (Transl.: Moscow Univ. Math. Bull. 34 (1979), 5–17 ).
K. Baclawski, Cohen-Macaulay ordered sets, J. Algebra 63 (1980), 226–258.
M. Ben-Or, Lower bounds for algebraic computation trees, in: Proc. 15th Ann. ACM Symp. on Theory of Computing, ACM Press, New York, 1983, pp. 80–86.
G. Birkhoff, Lattice Theory, 3rd ed., Amer. Math. Soc., Providence, R.I., 1967.
A. Björner, Shellable and Cohen-Macaulay partially ordered sets, Transactions Amer. Math. Soc. 260 (1980), 159–183.
A. Björner, Topological Methods, in: Handbook of Combinatorics, R. Graham, M. GrötscheL L. Lovász) (eds.). North-Holland, to appear; preprint, 1989.
A. Björner, The homology and shellabihty of matroids and geometric lattices, in: [W3], 1992, pp. 226–283.
A. Björner, P. Edelman and G. M. Ziegler, Hyperplane arrangements with a lattice of regions, Discr. Comp. Geometry 5 (1990), 263–288.
A. Björner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Cambridge University Press, 1993.
A. Björner and L. Lovász, Pseudomodular lattices and continuous matroids, Acta Sei. Math. Szeged 51 (1987), 295–308.
A. Björner and L. Lovász, Linear decision trees, subspace arrangements and Möbius functions, Journal Amer. Math. Soc. 7 (1994), 677–706.
A. Björner, L. Lovász and A. Yao, Linear decision trees: volume estimates and topological bounds, in: Proc. 24th Ann. ACM Symp. on Theory of Computing, ACM Press, New York, 1992, pp. 170–177.
BW] A. Björner and V. Welker, The homology of “k-equal” manifolds and related partition lattices, Advances in Math., to appear, (preprint, 1992.)
A. Björner and G. M. Ziegler, Combinatorial stratification of complex arrangements, Journal Amer. Math. Soc. 5 (1992), 105–149.
A. Björner and G. M. Ziegler, Introduction to greedoids, in: [W3], 1992, pp. 284–357.
J. Bochnak, M. Coste and M. F. Roy, Geometrie algébrique réelle, Springer-Verlag, Berlin, 1987.
J. Bokowski and B. Sturmfels, Computational Synthetic Geometry, Lecture Notes in Math 1355 (1989), Springer-Verlag.
E. Brieskorn, Sur les groupes de tresses (d’après V. I. Arnold), Séminaire Bourbaki 24e année 1971/72, Lecture Notes in Math 317 (1973), Springer-Verlag, 21–44.
A. R. Calderbank, P. Hanion and R. W. Robinson, Partitions into even and odd block size and some unusual characters of the symmetric groups, Proc. London Math. Soc. 53 (3) (1986), 288–320.
F. R. Cohen, Artin’s braid groups, classical homotopy theory, and sundry other curiosities, in: Braids, (ed. J. S. Birman and A. Lib- gober), Contemporary Math. 78 (1988), 167–206.
R. Cordovil, On the homotopy type of the Salvetti complexes determined by simplicial arrangements, European J. Combin. (to appear), preprint, 1991.
H. Crapo and R. Penne, Chirality and the isotopy classification of skew lines in projective 3-space, Advances in Math. 103 (1994), 1–106.
H. Crapo and G.-C. Rota, Combinatorial Geometries, MIT Press, Cambridge, 1970.
P. Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972), 273–302.
D. Dobkin and R. Lipton, On the complexity of computations under varying sets of primitives, in: Automata Theory and Formal Languages, H. Bradhage, (ed.), Lecture Notes in Comp. Sei. 33 (1975), Springer-Verlag, 110–117.
A. W. M. Dress, Duality theory for finite and infinite matroids with coefficients, Advances in Math. 59 (1986), 97–123.
A. W. M. Dress and W. Wenzel, Grassmann-Plücker relations and matroids with coefficients, Advances in Math. 86 (1991), 68–110.
E. Fadell and L. Neuwirth, Configuration spaces, Math. Scandinavica 10 (1961), 111–118.
M. J. Falk, A geometric duality for order complexes and hyperplane complements, European J. Combin. 13 (1992), 351–355.
J. Folkman, The homology groups of a lattice, J. Math. Mech. 15 (1966), 631–636.
R. Fox and L. Neuwirth, The braid groups, Math. Scandinavica 10 (1961), 119–126.
I. M. Gel’fand and R. D. MacPherson, A combinatorial formula for the Pontrjagin classes, Bull. Arner. Math. Soc. 26 (1992), 304–309.
I. M. Gel’fand and G. L. Rybnikov, Algebraic and topological invariants of oriented matroids, Soviet Math. Doklady 40 (1990), 148–152.
I. M. Gel’fand and V. V. Serganova, On the general definition of a matroid and a greedoid, Soviet Math. Doklady 35 (1987), 6–10.
I. M. Gel’fand and V. V. Serganova, Combinatorial geometries and torus strata on homogeneous compact manifolds, Russian Math. Surveys 42 (1987), 133–168.
M. Goresky and R. D. MacPherson, Stratified Morse Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 14, Springer-Verlag, 1988.
D. Y. Grigor’ev and N. N. Vorobjov, Solving systems of polynomial equations in subexponential time, J. Symbolic Computation 5 (1988), 37–64.
R. Hartshorne, Local cohomology. Lecture Notes in Math. 41 (1967), Springer-Verlag.
Y. Hu, On the homology of the complement of arrangements of subspaces and spheres, Proc. Amer. Math. Soc. (to appear), preprint, 1992.
A. W. Ingleton, Representation of matroids, in: Combinatorial Math, and its Applic., D. J. A. Welsh (ed.), Academic Press, 1971, pp. 149–167.
K. Jewell, P. Orlik and B. Z. Shapiro, On the complement of affine subspace arrangements, Topology and its Appl. 56 (1994), 215–233.
K. K. Karchiauskas, A generalized Lefschetz theorem, Funkts. Anal, i Prilozh. 11 (1977), 80–81. (Transl: Functional Anal. Appl. 11 (1978), 312–313.)
J. Karlander, A characterization of affine sign vector systems, European J. Combin. (to appear), preprint, KTH, Stockholm, 1992.
B. Körte, L. Lovász and R. Schrader, Greedoids, Springer-Verlag, Berlin, 1991.
S. R. Li and W. W. Li, Independence number of graphs and generators of ideals, Combinatorica 1 (1981), 55–61.
L. Lovász, Stable sets and polynomials, Discrete Math. 124 (1994), 137–153.
R. D. MacPherson, Combinatorial differential manifolds, in: Topological Methods in Modern Mathematics, Proc. Symp. in honor of J. Milnor’s sixtieth birthday, M. Spivak (ed.), Publish or Perish Press, 1993, 223–241.
V. F. Mazurovskii, Configurations of six skew lines,Zap. Nauchn. Sem. Leningrad Otdel. Mat. Institut Steklov (LOMI) 167 (1988), 121–134. (Transl.: J. Soviet Math. 52 (1990), 2825–2832.)
V. F. Mazurovskii, Kauffmann polynomials of non-singular configurations of projective lines, Russian Math. Surveys 44 (1989), 212–213.
V. F. Mazurovskii, Rigid isotopies of the real projective configurations., preprint, 1991.
J. Milnor, On the Betti numbers of real algebraic varieties, Proc. Amer. Math. Soc. 15 (1964), 275–280.
N. E. Mnëv, On manifolds of combinatorial types of projective configurations and convex polyhedra, Soviet Math. Doklady 32 (1985), 335–337.
N. E. Mnëv, The universality theorems on the classification problem of configuration varieties and convex polytope varieties, in: Topology and Geometry - Rohlin Seminar (ed. 0. Ya. Viro), Lecture Notes in Math. 1346, Springer-Verlag, 1988, pp. 527–544.
T. Nakamura, The topology of the configuration of projective subspaces in a projective space I, Sci. Papers Coll. Arts Sci. Univ. Tokyo 37 (1987), 13–35.
T. Nakamura, The topology of the configuration of projective subspaces in a projective space II, Sci. Papers Coll. Arts Sci. Univ. Tokyo 41 (1991), 59–81.
J. von Neumann, Examples of continuous geometries, Proc. Natl. Acad. Sci. USA 22 (1936), 101–108.
O. A. Oleinik, Estimates of the Betti numbers of real algebraic hyper-surfaces, Mat. Sbornik 28 (1951), 635–640.
O. A. Oleinik and I. B. Petrovsky, On the topology of real algebraic surfaces, Izv. Akad. Nauk SSSR 13 (1949), 389–402. (Transl.: TransL Amer. Math. Soc. (1) 7 (1962), 399–417 ).
P. Orlik, Complements of subspace arrangements, J. Algebraic Geometry 1 (1992), 147–156.
P. Orlik and L. Solomon, Combinatorics and topology of complements of hyperplanes, Inventiones Math. 56 (1980), 167–189.
P. Orlik and H. Terao, Arrangements of Hyperplanes, Springer-Verlag, 1992.
J. Pach, R. Pollack and E. Welzl, Weaving patterns of lines and line segments in space, in: Proc. SIGAL Conf. on Algorithms (Tokyo 1990), Springer Lecture Notes in Computer Science 450 (1990), 39–446.
L. Paris, Universal cover of Salvetti’s complex and topology of simplicial arrangements of hyperplanes, Trans. Amer. Math. Soc. 340 (1993), 149–178.
L. Paris, The Deligne complex of a real arrangement of hyperplanes, Nagoya Math. J. 131 (1993), 39–65.
R. Penne, Lines in 3-Space, Isotopy, Chirahty and Weavings, Ph.D. Dissertation, University of Antwerp, 1992.
R. Penne, Configurations of few lines in 3-space. Isotopy, chirality and planar layouts, Geometnae Dedicata 45 (1993), 49–82.
P. Pudlák and V. Rödl, A combinatorial approach to complexity, Combinatorica 12 (1992). 221–226.
P. Pudlák and J. Tuma, Every finite lattice can be embedded in a finite partition lattice. Algebra Universalis 10 (1980), 74–95.
A. A. Razborov, Applications of matrix methods to the theory of lower bounds in computational complexity, Combinatorica 10 (1990), 81–93.
J. Renegar, Computational complexity of solving real algebraic formulae, in: Proc. Intern. Congress of Math. 1990 (Kyoto), Springer-Verlag, 1991, pp. 1594–1606.
J. Richter-Gebert, Combinatorial obstructions to the lifting of weaving diagrams, Discr. Comp. Geometry 10 (1993), 287–312.
I. Rival and M. Stanford, Algebraic aspects of partition lattices, in [W3], 1992, pp. 106–122.
G.-C. Rota, On the foundations of combinatorial theory: I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 340–368.
B. E. Sagan, Shellability of exponential structures, Order 3 (1986), 47–54.
M. Salvetti, Topology of the complement of real hyperplanes in ℂN, Inventiones Math. 88 (1987), 603–618.
M. Salvetti, On the homotopy theory of complexes associated to metrical hemisphere complexes, Discrete Math. 113 (1993), 155–177.
M. V. Sapir and E. R. Scheinerman, Irrepresentability of short semilattices by Euclidean subspaces, Alg. Universalis, (to appear), preprint, 1992.
P. Schenzel, On the number of faces of simplicial complexes and the purity of Frobenius, Math. Zeitschrift 178 (1981), 125–142.
A. Schönhage, Equation solving in terms of computational complexity, in: Proc. Intern. Congress of Math. 1986 (Berkeley), Amer. Math. Soc., 1987, pp. 131–153.
B. Z. Shapiro and M. Z. Shapiro, The M-property of flag varieties, Topology and its Appl. 43 (1992), 65–81.
P. Shor, Stretchability of pseudolines is NP-hard, in: Applied Geometry and Discrete Mathematics—The Victor Klee Festschrift (eds. P. Gritzmann, B. Sturmfels), DIMACS Series in Discrete Mathemat¬ics and Theoretical Computer Science, Amer. Math. Soc. 4 (1991), pp. 531–554.
S. Smale, Algorithms for solving equations, in: Proc. Intern. Congress of Math. 1986 ( Berkeley ), Amer. Math. Soc., 1987, pp. 87–121.
S. Smale, On the topology of algorithms, I, J. Complexity 3 (1987), 81–89.
R. P. Stanley, Combinatorics and Commutative Algebra, Progress in Mathematics 41, Birkhäuser Boston, 1983.
R. P. Stanley, Enumerative Combinatorics, Volume I, Wadsworth, 1986.
M. Steele and A. Yao, Lower bounds for algebraic decision trees, J. Algorithms 3 (1982), 1–8.
H. Terao, Generalized exponents of a free arrangement of hyperplanes and Shephard-Todd-Brieskorn formula, Inventiones Math. 63 (1981), 159–179.
R. Thom, Sur l’homologie des variétés algébriques réelles,in: Differential and Algebraic Topology, (ed. S.S. Cairns ), Princeton Univ. Press, Princeton, 1965.
A. N. Varchenko and I. M. Gel’fand, Heaviside functions of a configuration of hyperplanes, Funkts. Anal i Prilozh. 21 (1987), 1–18. (Transi: Functional Anal. Appl. 21 (1988), 255–270 ).
V. A. Vassiliev, Cohomology of braid groups and the complexity of algorithms, Funkts. Anal. i Prilozh. 22 (1988), 15–24. (Transl.: Functional Anal. Appl. 22 (1988)).
V. A. Vassiliev, Topological complexity of algorithms for approximate solution of systems of polynomial equations, Algebra i Analiz 1 (1989), 98–113. (Transl.: Leningrad Math. J. 1 (1990), 1401–1417.)
V. A. Vassiliev, Stable homotopy type of the complement to affine plane arrangement, Mathematical Express, to appear. (Preprint, 1991 ).
V. A. Vassiliev, Complements of discriminants of smooth maps: Topology and applications, Transl. of Math. Monographs Vol. 98, Amer. Math. Soc., Providence, R.I., 1992.
A. M. Vershik, Topology of the convex polytopes’ manifolds, the manifold of the projective configurations of a given combinatorial type and representations of lattices, in: Topology and Geometry Rohlin Seminar O. Ya. Viro (ed.) Lecture Notes in Math. 1346(1988), Springer-Verlag, 557–581.
A. M. Vershik, A geometric approach to representations of partially ordered sets, Vestnik Leningrad Univ. Math. 21 (1988). 11–15.
O. Ya. Viro, Topological problems concerning lines and points of three-dimensional space. Soviet Math. Dokl 32 (1985), 528–531.
O. Ya. Viro and Yu. V. Drobotukhina, Configurations of skew lines, Leningrad J. Math, 1 (1990), 1027–1050.
A. G. Vitushkin, Complexity measure for the tabulation problem (in Russian), Fizmatgiz, Moscow. 1959. (Transl.: Theory of the transmission and processing of information, Pergamon Press, Oxford, 1961 ).
M. L. Wachs, A basis for the homology of d-divisible partition lattices, Advances in Math., (to appear), preprint. 1992.
M. L.Wachs and J. W. Walker, On geometric semilatticcs. Order 2 (1986), 367–385.
H. E. Warren, Lower bounds for approximation by nonlinear manifolds, Trans. Amer. Math. Soc, 133 (1968). 167–178.
D. J. A. Welsh, Matroid Theory, Academic Press, London. 1976.
N. White (ed.), Theory of Matroids, Cambridge Univ. Press. New York, 1986.
N. White (ed.). Combinatorial Geometries, Cambridge Univ. Press, New York, 1987.
N. White (ed.), Matroid Applications. Cambridge Univ. Press, New York, 1992.
A. Yao, Algebraic decision trees and Euler characteristics, preprint, 1992.
S. Yuzvinsky, Flasque sheaves on posets and Cohen-Macaulay unions of regular varieties, Advances in Math. 73 (1989), 24–42.
S. Yuzvinsky, Cohen-Macaulay seminormalizations of unions of linear subspaces, J. Algebra, 132 (1990), 431–445.
T. Zaslavsky, Facing up to arrangements: Face-count formulas for partitions of space by hyperplanes, Memoirs Amer. Math. Soc. 1 (154) (1975).
G. M. Ziegler, On the difference between real and complex arrangements, Math. Zeitschrift 212 (1993), 1–11.
G. M. Ziegler, Matroid shellability, ß-systems and affine hyperplane arrangements, J. Algebraic Combinatorics 1 (1992), 283–300.
G. M. Ziegler, “What is a complex matroid?” Discr. Comp. Geometry 10 (1993), 313–348.
G. M. Ziegler, Combinatorial models for subspace arrangements, Habilitations-Schrift, Techn. Univ., Berlin, 1992.
G. M. Ziegler and R. T. Živaljević, Homotopy types of subspace arrangements via diagrams of spaces, Math. Annalen 295 (1993), 527–548.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1994 Birkhäuser Verlag
About this chapter
Cite this chapter
Björner, A. (1994). Subspace Arrangements. In: Joseph, A., Mignot, F., Murat, F., Prum, B., Rentschler, R. (eds) First European Congress of Mathematics . Progress in Mathematics, vol 3. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9110-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-0348-9110-3_10
Publisher Name: Birkhäuser Basel
Print ISBN: 978-3-0348-9911-6
Online ISBN: 978-3-0348-9110-3
eBook Packages: Springer Book Archive