Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 3))

Abstract

This paper will describe some recent developments in an area where combinatorics and complexity theory on the one hand, and geometry and topology on the other, have interacted in several fruitful ways. By a subspace arrangement we mean a finite collection of affine subspaces in the Euclidean space ℝn. There is a long tradition of work on hyperplane arrangements, i.e., concerning subspaces of codimension 1. Here, however, the emphasis will be entirely on arrangements of subspaces of arbitrary dimensions, about which much less is known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Aigner, Combinatorial Theory, Springer-Verlag, Grundlehren 234, 1979.

    Google Scholar 

  2. V. I. Arnold, The cohomology ring of the colored braid group, Mat. Zametki 5 (1969), 227–231. (Transl. Mathematical Notes 5 (1969), 138–140.)

    MathSciNet  Google Scholar 

  3. V. I. Arnold, On some topological invariants of algebraic functions I, Trudy Moskov. Mat. Obšč. 21 (1970), 27–46; (Transl.: Trans. Moscow Math. Soc. 21 (1970), 30–52.)

    Google Scholar 

  4. V. I. Arnold, The spaces of functions with mild singularities, Funkts. Anal. i Prilozh. 23 (1989), 1–10. (Transl: Functional Anal Appl. 23 (1989).)

    Google Scholar 

  5. V. I. Arnold and O. A. Oleinik, Topology of real algebraic varieties, Vestmk Moskov. Univ. Ser. I Mat. Mech. 34 (1979), 7–17. (Transl.: Moscow Univ. Math. Bull. 34 (1979), 5–17 ).

    MathSciNet  Google Scholar 

  6. K. Baclawski, Cohen-Macaulay ordered sets, J. Algebra 63 (1980), 226–258.

    MathSciNet  MATH  Google Scholar 

  7. M. Ben-Or, Lower bounds for algebraic computation trees, in: Proc. 15th Ann. ACM Symp. on Theory of Computing, ACM Press, New York, 1983, pp. 80–86.

    Google Scholar 

  8. G. Birkhoff, Lattice Theory, 3rd ed., Amer. Math. Soc., Providence, R.I., 1967.

    MATH  Google Scholar 

  9. A. Björner, Shellable and Cohen-Macaulay partially ordered sets, Transactions Amer. Math. Soc. 260 (1980), 159–183.

    MATH  Google Scholar 

  10. A. Björner, Topological Methods, in: Handbook of Combinatorics, R. Graham, M. GrötscheL L. Lovász) (eds.). North-Holland, to appear; preprint, 1989.

    Google Scholar 

  11. A. Björner, The homology and shellabihty of matroids and geometric lattices, in: [W3], 1992, pp. 226–283.

    Google Scholar 

  12. A. Björner, P. Edelman and G. M. Ziegler, Hyperplane arrangements with a lattice of regions, Discr. Comp. Geometry 5 (1990), 263–288.

    MATH  Google Scholar 

  13. A. Björner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Cambridge University Press, 1993.

    Google Scholar 

  14. A. Björner and L. Lovász, Pseudomodular lattices and continuous matroids, Acta Sei. Math. Szeged 51 (1987), 295–308.

    MATH  Google Scholar 

  15. A. Björner and L. Lovász, Linear decision trees, subspace arrangements and Möbius functions, Journal Amer. Math. Soc. 7 (1994), 677–706.

    MATH  Google Scholar 

  16. A. Björner, L. Lovász and A. Yao, Linear decision trees: volume estimates and topological bounds, in: Proc. 24th Ann. ACM Symp. on Theory of Computing, ACM Press, New York, 1992, pp. 170–177.

    Google Scholar 

  17. BW] A. Björner and V. Welker, The homology of “k-equal” manifolds and related partition lattices, Advances in Math., to appear, (preprint, 1992.)

    Google Scholar 

  18. A. Björner and G. M. Ziegler, Combinatorial stratification of complex arrangements, Journal Amer. Math. Soc. 5 (1992), 105–149.

    MATH  Google Scholar 

  19. A. Björner and G. M. Ziegler, Introduction to greedoids, in: [W3], 1992, pp. 284–357.

    Google Scholar 

  20. J. Bochnak, M. Coste and M. F. Roy, Geometrie algébrique réelle, Springer-Verlag, Berlin, 1987.

    MATH  Google Scholar 

  21. J. Bokowski and B. Sturmfels, Computational Synthetic Geometry, Lecture Notes in Math 1355 (1989), Springer-Verlag.

    Google Scholar 

  22. E. Brieskorn, Sur les groupes de tresses (d’après V. I. Arnold), Séminaire Bourbaki 24e année 1971/72, Lecture Notes in Math 317 (1973), Springer-Verlag, 21–44.

    MathSciNet  Google Scholar 

  23. A. R. Calderbank, P. Hanion and R. W. Robinson, Partitions into even and odd block size and some unusual characters of the symmetric groups, Proc. London Math. Soc. 53 (3) (1986), 288–320.

    MathSciNet  MATH  Google Scholar 

  24. F. R. Cohen, Artin’s braid groups, classical homotopy theory, and sundry other curiosities, in: Braids, (ed. J. S. Birman and A. Lib- gober), Contemporary Math. 78 (1988), 167–206.

    Google Scholar 

  25. R. Cordovil, On the homotopy type of the Salvetti complexes determined by simplicial arrangements, European J. Combin. (to appear), preprint, 1991.

    Google Scholar 

  26. H. Crapo and R. Penne, Chirality and the isotopy classification of skew lines in projective 3-space, Advances in Math. 103 (1994), 1–106.

    MathSciNet  MATH  Google Scholar 

  27. H. Crapo and G.-C. Rota, Combinatorial Geometries, MIT Press, Cambridge, 1970.

    MATH  Google Scholar 

  28. P. Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972), 273–302.

    MathSciNet  MATH  Google Scholar 

  29. D. Dobkin and R. Lipton, On the complexity of computations under varying sets of primitives, in: Automata Theory and Formal Languages, H. Bradhage, (ed.), Lecture Notes in Comp. Sei. 33 (1975), Springer-Verlag, 110–117.

    Google Scholar 

  30. A. W. M. Dress, Duality theory for finite and infinite matroids with coefficients, Advances in Math. 59 (1986), 97–123.

    MathSciNet  MATH  Google Scholar 

  31. A. W. M. Dress and W. Wenzel, Grassmann-Plücker relations and matroids with coefficients, Advances in Math. 86 (1991), 68–110.

    MathSciNet  MATH  Google Scholar 

  32. E. Fadell and L. Neuwirth, Configuration spaces, Math. Scandinavica 10 (1961), 111–118.

    MathSciNet  Google Scholar 

  33. M. J. Falk, A geometric duality for order complexes and hyperplane complements, European J. Combin. 13 (1992), 351–355.

    MathSciNet  MATH  Google Scholar 

  34. J. Folkman, The homology groups of a lattice, J. Math. Mech. 15 (1966), 631–636.

    MathSciNet  MATH  Google Scholar 

  35. R. Fox and L. Neuwirth, The braid groups, Math. Scandinavica 10 (1961), 119–126.

    MathSciNet  Google Scholar 

  36. I. M. Gel’fand and R. D. MacPherson, A combinatorial formula for the Pontrjagin classes, Bull. Arner. Math. Soc. 26 (1992), 304–309.

    MathSciNet  Google Scholar 

  37. I. M. Gel’fand and G. L. Rybnikov, Algebraic and topological invariants of oriented matroids, Soviet Math. Doklady 40 (1990), 148–152.

    MathSciNet  MATH  Google Scholar 

  38. I. M. Gel’fand and V. V. Serganova, On the general definition of a matroid and a greedoid, Soviet Math. Doklady 35 (1987), 6–10.

    MATH  Google Scholar 

  39. I. M. Gel’fand and V. V. Serganova, Combinatorial geometries and torus strata on homogeneous compact manifolds, Russian Math. Surveys 42 (1987), 133–168.

    MathSciNet  MATH  Google Scholar 

  40. M. Goresky and R. D. MacPherson, Stratified Morse Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 14, Springer-Verlag, 1988.

    Google Scholar 

  41. D. Y. Grigor’ev and N. N. Vorobjov, Solving systems of polynomial equations in subexponential time, J. Symbolic Computation 5 (1988), 37–64.

    MathSciNet  MATH  Google Scholar 

  42. R. Hartshorne, Local cohomology. Lecture Notes in Math. 41 (1967), Springer-Verlag.

    Google Scholar 

  43. Y. Hu, On the homology of the complement of arrangements of subspaces and spheres, Proc. Amer. Math. Soc. (to appear), preprint, 1992.

    Google Scholar 

  44. A. W. Ingleton, Representation of matroids, in: Combinatorial Math, and its Applic., D. J. A. Welsh (ed.), Academic Press, 1971, pp. 149–167.

    Google Scholar 

  45. K. Jewell, P. Orlik and B. Z. Shapiro, On the complement of affine subspace arrangements, Topology and its Appl. 56 (1994), 215–233.

    MathSciNet  MATH  Google Scholar 

  46. K. K. Karchiauskas, A generalized Lefschetz theorem, Funkts. Anal, i Prilozh. 11 (1977), 80–81. (Transl: Functional Anal. Appl. 11 (1978), 312–313.)

    Google Scholar 

  47. J. Karlander, A characterization of affine sign vector systems, European J. Combin. (to appear), preprint, KTH, Stockholm, 1992.

    Google Scholar 

  48. B. Körte, L. Lovász and R. Schrader, Greedoids, Springer-Verlag, Berlin, 1991.

    Google Scholar 

  49. S. R. Li and W. W. Li, Independence number of graphs and generators of ideals, Combinatorica 1 (1981), 55–61.

    MathSciNet  MATH  Google Scholar 

  50. L. Lovász, Stable sets and polynomials, Discrete Math. 124 (1994), 137–153.

    MathSciNet  MATH  Google Scholar 

  51. R. D. MacPherson, Combinatorial differential manifolds, in: Topological Methods in Modern Mathematics, Proc. Symp. in honor of J. Milnor’s sixtieth birthday, M. Spivak (ed.), Publish or Perish Press, 1993, 223–241.

    Google Scholar 

  52. V. F. Mazurovskii, Configurations of six skew lines,Zap. Nauchn. Sem. Leningrad Otdel. Mat. Institut Steklov (LOMI) 167 (1988), 121–134. (Transl.: J. Soviet Math. 52 (1990), 2825–2832.)

    Google Scholar 

  53. V. F. Mazurovskii, Kauffmann polynomials of non-singular configurations of projective lines, Russian Math. Surveys 44 (1989), 212–213.

    MathSciNet  Google Scholar 

  54. V. F. Mazurovskii, Rigid isotopies of the real projective configurations., preprint, 1991.

    Google Scholar 

  55. J. Milnor, On the Betti numbers of real algebraic varieties, Proc. Amer. Math. Soc. 15 (1964), 275–280.

    MathSciNet  MATH  Google Scholar 

  56. N. E. Mnëv, On manifolds of combinatorial types of projective configurations and convex polyhedra, Soviet Math. Doklady 32 (1985), 335–337.

    MATH  Google Scholar 

  57. N. E. Mnëv, The universality theorems on the classification problem of configuration varieties and convex polytope varieties, in: Topology and Geometry - Rohlin Seminar (ed. 0. Ya. Viro), Lecture Notes in Math. 1346, Springer-Verlag, 1988, pp. 527–544.

    Google Scholar 

  58. T. Nakamura, The topology of the configuration of projective subspaces in a projective space I, Sci. Papers Coll. Arts Sci. Univ. Tokyo 37 (1987), 13–35.

    MATH  Google Scholar 

  59. T. Nakamura, The topology of the configuration of projective subspaces in a projective space II, Sci. Papers Coll. Arts Sci. Univ. Tokyo 41 (1991), 59–81.

    MATH  Google Scholar 

  60. J. von Neumann, Examples of continuous geometries, Proc. Natl. Acad. Sci. USA 22 (1936), 101–108.

    Google Scholar 

  61. O. A. Oleinik, Estimates of the Betti numbers of real algebraic hyper-surfaces, Mat. Sbornik 28 (1951), 635–640.

    MathSciNet  Google Scholar 

  62. O. A. Oleinik and I. B. Petrovsky, On the topology of real algebraic surfaces, Izv. Akad. Nauk SSSR 13 (1949), 389–402. (Transl.: TransL Amer. Math. Soc. (1) 7 (1962), 399–417 ).

    Google Scholar 

  63. P. Orlik, Complements of subspace arrangements, J. Algebraic Geometry 1 (1992), 147–156.

    MathSciNet  MATH  Google Scholar 

  64. P. Orlik and L. Solomon, Combinatorics and topology of complements of hyperplanes, Inventiones Math. 56 (1980), 167–189.

    MathSciNet  MATH  Google Scholar 

  65. P. Orlik and H. Terao, Arrangements of Hyperplanes, Springer-Verlag, 1992.

    Google Scholar 

  66. J. Pach, R. Pollack and E. Welzl, Weaving patterns of lines and line segments in space, in: Proc. SIGAL Conf. on Algorithms (Tokyo 1990), Springer Lecture Notes in Computer Science 450 (1990), 39–446.

    MathSciNet  Google Scholar 

  67. L. Paris, Universal cover of Salvetti’s complex and topology of simplicial arrangements of hyperplanes, Trans. Amer. Math. Soc. 340 (1993), 149–178.

    MathSciNet  MATH  Google Scholar 

  68. L. Paris, The Deligne complex of a real arrangement of hyperplanes, Nagoya Math. J. 131 (1993), 39–65.

    MathSciNet  MATH  Google Scholar 

  69. R. Penne, Lines in 3-Space, Isotopy, Chirahty and Weavings, Ph.D. Dissertation, University of Antwerp, 1992.

    Google Scholar 

  70. R. Penne, Configurations of few lines in 3-space. Isotopy, chirality and planar layouts, Geometnae Dedicata 45 (1993), 49–82.

    MathSciNet  MATH  Google Scholar 

  71. P. Pudlák and V. Rödl, A combinatorial approach to complexity, Combinatorica 12 (1992). 221–226.

    MathSciNet  MATH  Google Scholar 

  72. P. Pudlák and J. Tuma, Every finite lattice can be embedded in a finite partition lattice. Algebra Universalis 10 (1980), 74–95.

    MathSciNet  MATH  Google Scholar 

  73. A. A. Razborov, Applications of matrix methods to the theory of lower bounds in computational complexity, Combinatorica 10 (1990), 81–93.

    MathSciNet  MATH  Google Scholar 

  74. J. Renegar, Computational complexity of solving real algebraic formulae, in: Proc. Intern. Congress of Math. 1990 (Kyoto), Springer-Verlag, 1991, pp. 1594–1606.

    Google Scholar 

  75. J. Richter-Gebert, Combinatorial obstructions to the lifting of weaving diagrams, Discr. Comp. Geometry 10 (1993), 287–312.

    MathSciNet  MATH  Google Scholar 

  76. I. Rival and M. Stanford, Algebraic aspects of partition lattices, in [W3], 1992, pp. 106–122.

    Google Scholar 

  77. G.-C. Rota, On the foundations of combinatorial theory: I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 340–368.

    MathSciNet  MATH  Google Scholar 

  78. B. E. Sagan, Shellability of exponential structures, Order 3 (1986), 47–54.

    MathSciNet  MATH  Google Scholar 

  79. M. Salvetti, Topology of the complement of real hyperplanes in ℂN, Inventiones Math. 88 (1987), 603–618.

    MathSciNet  MATH  Google Scholar 

  80. M. Salvetti, On the homotopy theory of complexes associated to metrical hemisphere complexes, Discrete Math. 113 (1993), 155–177.

    MathSciNet  MATH  Google Scholar 

  81. M. V. Sapir and E. R. Scheinerman, Irrepresentability of short semilattices by Euclidean subspaces, Alg. Universalis, (to appear), preprint, 1992.

    Google Scholar 

  82. P. Schenzel, On the number of faces of simplicial complexes and the purity of Frobenius, Math. Zeitschrift 178 (1981), 125–142.

    MathSciNet  MATH  Google Scholar 

  83. A. Schönhage, Equation solving in terms of computational complexity, in: Proc. Intern. Congress of Math. 1986 (Berkeley), Amer. Math. Soc., 1987, pp. 131–153.

    Google Scholar 

  84. B. Z. Shapiro and M. Z. Shapiro, The M-property of flag varieties, Topology and its Appl. 43 (1992), 65–81.

    MATH  Google Scholar 

  85. P. Shor, Stretchability of pseudolines is NP-hard, in: Applied Geometry and Discrete Mathematics—The Victor Klee Festschrift (eds. P. Gritzmann, B. Sturmfels), DIMACS Series in Discrete Mathemat¬ics and Theoretical Computer Science, Amer. Math. Soc. 4 (1991), pp. 531–554.

    Google Scholar 

  86. S. Smale, Algorithms for solving equations, in: Proc. Intern. Congress of Math. 1986 ( Berkeley ), Amer. Math. Soc., 1987, pp. 87–121.

    Google Scholar 

  87. S. Smale, On the topology of algorithms, I, J. Complexity 3 (1987), 81–89.

    MathSciNet  MATH  Google Scholar 

  88. R. P. Stanley, Combinatorics and Commutative Algebra, Progress in Mathematics 41, Birkhäuser Boston, 1983.

    Google Scholar 

  89. R. P. Stanley, Enumerative Combinatorics, Volume I, Wadsworth, 1986.

    Google Scholar 

  90. M. Steele and A. Yao, Lower bounds for algebraic decision trees, J. Algorithms 3 (1982), 1–8.

    MathSciNet  MATH  Google Scholar 

  91. H. Terao, Generalized exponents of a free arrangement of hyperplanes and Shephard-Todd-Brieskorn formula, Inventiones Math. 63 (1981), 159–179.

    MathSciNet  MATH  Google Scholar 

  92. R. Thom, Sur l’homologie des variétés algébriques réelles,in: Differential and Algebraic Topology, (ed. S.S. Cairns ), Princeton Univ. Press, Princeton, 1965.

    Google Scholar 

  93. A. N. Varchenko and I. M. Gel’fand, Heaviside functions of a configuration of hyperplanes, Funkts. Anal i Prilozh. 21 (1987), 1–18. (Transi: Functional Anal. Appl. 21 (1988), 255–270 ).

    Google Scholar 

  94. V. A. Vassiliev, Cohomology of braid groups and the complexity of algorithms, Funkts. Anal. i Prilozh. 22 (1988), 15–24. (Transl.: Functional Anal. Appl. 22 (1988)).

    Google Scholar 

  95. V. A. Vassiliev, Topological complexity of algorithms for approximate solution of systems of polynomial equations, Algebra i Analiz 1 (1989), 98–113. (Transl.: Leningrad Math. J. 1 (1990), 1401–1417.)

    Google Scholar 

  96. V. A. Vassiliev, Stable homotopy type of the complement to affine plane arrangement, Mathematical Express, to appear. (Preprint, 1991 ).

    Google Scholar 

  97. V. A. Vassiliev, Complements of discriminants of smooth maps: Topology and applications, Transl. of Math. Monographs Vol. 98, Amer. Math. Soc., Providence, R.I., 1992.

    Google Scholar 

  98. A. M. Vershik, Topology of the convex polytopes’ manifolds, the manifold of the projective configurations of a given combinatorial type and representations of lattices, in: Topology and Geometry Rohlin Seminar O. Ya. Viro (ed.) Lecture Notes in Math. 1346(1988), Springer-Verlag, 557–581.

    Google Scholar 

  99. A. M. Vershik, A geometric approach to representations of partially ordered sets, Vestnik Leningrad Univ. Math. 21 (1988). 11–15.

    MathSciNet  MATH  Google Scholar 

  100. O. Ya. Viro, Topological problems concerning lines and points of three-dimensional space. Soviet Math. Dokl 32 (1985), 528–531.

    MATH  Google Scholar 

  101. O. Ya. Viro and Yu. V. Drobotukhina, Configurations of skew lines, Leningrad J. Math, 1 (1990), 1027–1050.

    MathSciNet  MATH  Google Scholar 

  102. A. G. Vitushkin, Complexity measure for the tabulation problem (in Russian), Fizmatgiz, Moscow. 1959. (Transl.: Theory of the transmission and processing of information, Pergamon Press, Oxford, 1961 ).

    Google Scholar 

  103. M. L. Wachs, A basis for the homology of d-divisible partition lattices, Advances in Math., (to appear), preprint. 1992.

    Google Scholar 

  104. M. L.Wachs and J. W. Walker, On geometric semilatticcs. Order 2 (1986), 367–385.

    MathSciNet  Google Scholar 

  105. H. E. Warren, Lower bounds for approximation by nonlinear manifolds, Trans. Amer. Math. Soc, 133 (1968). 167–178.

    MathSciNet  MATH  Google Scholar 

  106. D. J. A. Welsh, Matroid Theory, Academic Press, London. 1976.

    MATH  Google Scholar 

  107. N. White (ed.), Theory of Matroids, Cambridge Univ. Press. New York, 1986.

    Google Scholar 

  108. N. White (ed.). Combinatorial Geometries, Cambridge Univ. Press, New York, 1987.

    Google Scholar 

  109. N. White (ed.), Matroid Applications. Cambridge Univ. Press, New York, 1992.

    Google Scholar 

  110. A. Yao, Algebraic decision trees and Euler characteristics, preprint, 1992.

    Google Scholar 

  111. S. Yuzvinsky, Flasque sheaves on posets and Cohen-Macaulay unions of regular varieties, Advances in Math. 73 (1989), 24–42.

    MathSciNet  MATH  Google Scholar 

  112. S. Yuzvinsky, Cohen-Macaulay seminormalizations of unions of linear subspaces, J. Algebra, 132 (1990), 431–445.

    MathSciNet  Google Scholar 

  113. T. Zaslavsky, Facing up to arrangements: Face-count formulas for partitions of space by hyperplanes, Memoirs Amer. Math. Soc. 1 (154) (1975).

    Google Scholar 

  114. G. M. Ziegler, On the difference between real and complex arrangements, Math. Zeitschrift 212 (1993), 1–11.

    MathSciNet  MATH  Google Scholar 

  115. G. M. Ziegler, Matroid shellability, ß-systems and affine hyperplane arrangements, J. Algebraic Combinatorics 1 (1992), 283–300.

    MathSciNet  MATH  Google Scholar 

  116. G. M. Ziegler, “What is a complex matroid?” Discr. Comp. Geometry 10 (1993), 313–348.

    Google Scholar 

  117. G. M. Ziegler, Combinatorial models for subspace arrangements, Habilitations-Schrift, Techn. Univ., Berlin, 1992.

    Google Scholar 

  118. G. M. Ziegler and R. T. Živaljević, Homotopy types of subspace arrangements via diagrams of spaces, Math. Annalen 295 (1993), 527–548.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Verlag

About this chapter

Cite this chapter

Björner, A. (1994). Subspace Arrangements. In: Joseph, A., Mignot, F., Murat, F., Prum, B., Rentschler, R. (eds) First European Congress of Mathematics . Progress in Mathematics, vol 3. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9110-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9110-3_10

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9911-6

  • Online ISBN: 978-3-0348-9110-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics