Skip to main content

Magnetic Lieb-Thirring Inequalities and Stochastic Oscillatory Integrals

  • Conference paper
Partial Differential Operators and Mathematical Physics

Part of the book series: Operator Theory Advances and Applications ((OT,volume 78))

Abstract

We study the generalizations of the well-known Lieb-Thirring inequality for the magnetic Schrödinger operator with a nonconstant magnetic field. We use stochastic methods to prove estimates on the moments of the negative eigenvalues.

Work supported by the NSF grant PHY90-19433 A02, by the Alfred Sloan Foundation dissertation Fellowship and by the Erwin Schrödinger Institute for Mathematical Physics in Vienna.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Y. Aharonov, A. Casher, Ground state of spin-1/2 charged particle in a two-dimensional magnetic field. Phys. Rev. A19(1979), 2461–2462.

    MathSciNet  Google Scholar 

  2. J. Avron, I. Herbst and B. Simon, Schrödinger operators with magnetic fields. I. General interactions. Duke Math. J. 45(1978), 847–883.

    Article  MathSciNet  MATH  Google Scholar 

  3. Y. Colin de Verdiére, L’asymptotique de Weyl pour les bouteilles magnétiques. Commun. Math. Phys. 105(1986), 327–335.

    Article  MATH  Google Scholar 

  4. G. F. De Angelis, G. Jona-Lasinio and M. Sirugue, Probabilistic solution of Pauli type equations. J. Phys. A: Math. Gen. 16(1983), 2433–2444.

    Article  MATH  Google Scholar 

  5. L. Erdős, Ground state density of the two-dimensional Pauli operator in the strong magnetic field. Lett. Math. Phys. 29(1993), 219–240.

    Article  MathSciNet  Google Scholar 

  6. L. Erdős, Estimates on stochastic oscillatory integrals and on the heat kernel of the magnetic Schrödinger operator. Accepted for Duke Math. J.

    Google Scholar 

  7. L. Erdős, Magnetic Lieb-Thirring inequalities and stochastic oscillatory in¬tegrals. Ph.D. Thesis, Princeton University, 1994.

    Google Scholar 

  8. L. Erdős, Magnetic Lieb-Thirring inequalities. Submitted to Commun. Math. Phys.

    Google Scholar 

  9. E. H. Lieb, The number of bound states of one-body Schrödinger operators and the Weyl problem. pp. 241–251 in Proceedings of Symposia in Pure Mathematics. Vol. 36, 1980.

    Google Scholar 

  10. E. H. Lieb and W. Thirring, Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. pp. 269–304 in Studies in Mathematical Physics, Essays in Honor of Valentine Bargmann. Eds. E. H. Lieb, B. Simon and A. S. Wightman, Princeton Univ. Press, Princeton, New Jersey, 1976.

    Google Scholar 

  11. E. H. Lieb, J. P. Solovej and J. Yngvason, Asymptotics of heavy atoms in high magnetic fields: I. Lowest Landau band regions. To appear in Commun. Pure Appl. Math.

    Google Scholar 

  12. E. H. Lieb, J. P. Solovej and J. Yngvason, Asymptotics of heavy atoms in high magnetic fields: II. Semiclassical regions. Commun. Math. Phys. 161(1994), 77–124.

    Article  MathSciNet  MATH  Google Scholar 

  13. E. H. Lieb, J. P. Solovej and J. Yngvason in preparation. An announcement of the result was made in Quantum dots to appear in the proceedings of the international conference on partial differential equations and mathematical physics held at the University of Alabama, Birmingham, March 1994.

    Google Scholar 

  14. H. Matsumoto, The short time asymptotics of the traces of the heat kernels for the magnetic Schrödinger operators. J. Math. Soc. Japan. 42(1990), 677–689.

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Matsumoto, Classical and non-classical eigenvalue asymptotics for the magnetic Schrödinger operators. J. of Funct. Anal. 95(1991), 460–482.

    Article  MATH  Google Scholar 

  16. A. Sobolev, The quasiclassical asymptotics of local Riesz means for the Schrödinger operator in a strong homogeneous magnetic field. Duke Math J. (to appear).

    Google Scholar 

  17. H. Tamura, Asymptotic distribution of eigenvalues for Schrödinger operators with homogeneous magnetic fields. Osaka J. Math. 25(1988), 633–647.

    MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Erdős, L. (1995). Magnetic Lieb-Thirring Inequalities and Stochastic Oscillatory Integrals. In: Demuth, M., Schulze, BW. (eds) Partial Differential Operators and Mathematical Physics. Operator Theory Advances and Applications, vol 78. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9092-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9092-2_13

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9903-1

  • Online ISBN: 978-3-0348-9092-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics