Abstract
We study the generalizations of the well-known Lieb-Thirring inequality for the magnetic Schrödinger operator with a nonconstant magnetic field. We use stochastic methods to prove estimates on the moments of the negative eigenvalues.
Work supported by the NSF grant PHY90-19433 A02, by the Alfred Sloan Foundation dissertation Fellowship and by the Erwin Schrödinger Institute for Mathematical Physics in Vienna.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Y. Aharonov, A. Casher, Ground state of spin-1/2 charged particle in a two-dimensional magnetic field. Phys. Rev. A19(1979), 2461–2462.
J. Avron, I. Herbst and B. Simon, Schrödinger operators with magnetic fields. I. General interactions. Duke Math. J. 45(1978), 847–883.
Y. Colin de Verdiére, L’asymptotique de Weyl pour les bouteilles magnétiques. Commun. Math. Phys. 105(1986), 327–335.
G. F. De Angelis, G. Jona-Lasinio and M. Sirugue, Probabilistic solution of Pauli type equations. J. Phys. A: Math. Gen. 16(1983), 2433–2444.
L. Erdős, Ground state density of the two-dimensional Pauli operator in the strong magnetic field. Lett. Math. Phys. 29(1993), 219–240.
L. Erdős, Estimates on stochastic oscillatory integrals and on the heat kernel of the magnetic Schrödinger operator. Accepted for Duke Math. J.
L. Erdős, Magnetic Lieb-Thirring inequalities and stochastic oscillatory in¬tegrals. Ph.D. Thesis, Princeton University, 1994.
L. Erdős, Magnetic Lieb-Thirring inequalities. Submitted to Commun. Math. Phys.
E. H. Lieb, The number of bound states of one-body Schrödinger operators and the Weyl problem. pp. 241–251 in Proceedings of Symposia in Pure Mathematics. Vol. 36, 1980.
E. H. Lieb and W. Thirring, Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. pp. 269–304 in Studies in Mathematical Physics, Essays in Honor of Valentine Bargmann. Eds. E. H. Lieb, B. Simon and A. S. Wightman, Princeton Univ. Press, Princeton, New Jersey, 1976.
E. H. Lieb, J. P. Solovej and J. Yngvason, Asymptotics of heavy atoms in high magnetic fields: I. Lowest Landau band regions. To appear in Commun. Pure Appl. Math.
E. H. Lieb, J. P. Solovej and J. Yngvason, Asymptotics of heavy atoms in high magnetic fields: II. Semiclassical regions. Commun. Math. Phys. 161(1994), 77–124.
E. H. Lieb, J. P. Solovej and J. Yngvason in preparation. An announcement of the result was made in Quantum dots to appear in the proceedings of the international conference on partial differential equations and mathematical physics held at the University of Alabama, Birmingham, March 1994.
H. Matsumoto, The short time asymptotics of the traces of the heat kernels for the magnetic Schrödinger operators. J. Math. Soc. Japan. 42(1990), 677–689.
H. Matsumoto, Classical and non-classical eigenvalue asymptotics for the magnetic Schrödinger operators. J. of Funct. Anal. 95(1991), 460–482.
A. Sobolev, The quasiclassical asymptotics of local Riesz means for the Schrödinger operator in a strong homogeneous magnetic field. Duke Math J. (to appear).
H. Tamura, Asymptotic distribution of eigenvalues for Schrödinger operators with homogeneous magnetic fields. Osaka J. Math. 25(1988), 633–647.
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1995 Birkhäuser Verlag Basel/Switzerland
About this paper
Cite this paper
Erdős, L. (1995). Magnetic Lieb-Thirring Inequalities and Stochastic Oscillatory Integrals. In: Demuth, M., Schulze, BW. (eds) Partial Differential Operators and Mathematical Physics. Operator Theory Advances and Applications, vol 78. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9092-2_13
Download citation
DOI: https://doi.org/10.1007/978-3-0348-9092-2_13
Publisher Name: Birkhäuser Basel
Print ISBN: 978-3-0348-9903-1
Online ISBN: 978-3-0348-9092-2
eBook Packages: Springer Book Archive