Embedding Subspaces of Lp in pN

  • Michel Talagrand
Part of the Operator Theory Advances and Applications book series (OT, volume 77)


We show that a n-dimensional subspace of L p embeds in p N for N = n log n(loglog n)2 when 1 < p < 2.


Unit Ball Random Choice Entropy Estimate Independent Normal Random Variable Delicate Statement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B-L-M]
    J. Bourgain, J. Lindenstrauss, V. Milman, Approximation of zonoids by zonotopes, Acta. Math, 162 (1989), 73–141.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [L-T]
    M. Ledoux, M. Talagrand, Probability in a Banach space, Springer-Verlag, 1991.Google Scholar
  3. [T1]
    M. Talagrand, Embedding subspaces of L 1 into 1N, Proc. Amer. Math. Soc. 108 (1990), 363–369.MathSciNetzbMATHGoogle Scholar
  4. [T2]
    M. Talagrand Construction of majorizing measures, Bernoulli processesGoogle Scholar
  5. and cotype Geometric And Functional Analysis, to appear.Google Scholar
  6. [TJ]
    N. Tomczak-Jaegermann, Dualité des nombres d’entropie pour des opérateurs à valeurs dans un espace de Hilbert, C. R. Acad. Sci. Paris 305 (1987), 299–301.MathSciNetzbMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1995

Authors and Affiliations

  • Michel Talagrand
    • 1
    • 2
  1. 1.Equipe d Analyse-Tour 56 E.R.A. au C.N.R.S. no. 754Université Paris VIParis Cedex 05France
  2. 2.Department of MathematicsThe Ohio State UniversityColumbusUSA

Personalised recommendations