Skip to main content

Positive Scalar Curvature Metrics — Existence and Classification Questions

  • Conference paper
Proceedings of the International Congress of Mathematicians

Abstract

Let M be an n-dimensional manifold (all manifolds considered in this paper are smooth, compact, and, unless otherwise specified, their boundary is empty).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. W. Anderson, E. H. Brown, Jr., and F. P. Peterson, Pin cobordism and related topics, Comment. Math. Helv. 44 (1969), 462–468.

    Article  MathSciNet  Google Scholar 

  2. A. L. Besse, Einstein Manifolds, Springer-Verlag, Berlin and New York, 1986.

    MATH  Google Scholar 

  3. B. Botvinnik and P. B. Gilkey, The eta invariant and metrics of positive scalar curvature, preprint.

    Google Scholar 

  4. B. Botvinnik, P. B. Gilkey, and S. Stolz, The Gromov-Lawson-Rosenberg Conjecture for space form qroups, preprint 1994.

    Google Scholar 

  5. U. Bunke, A K-theoretic relative index theorem and Callias-type Dirac operators, to appear in Math. Ann.

    Google Scholar 

  6. P. Gajer, Riemannian metrics of positive scalar curvature on compact manifolds with boundary, Ann. Global Anal. Geom. 5 (1987), 179–191.

    Article  MathSciNet  Google Scholar 

  7. M. Gromov and H. B. Lawson, Jr., The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. (2) 111 (1980), 423–434.

    Article  MathSciNet  Google Scholar 

  8. ——, Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Publ. Math. IHES (1983), no. 58, 83–196.

    Google Scholar 

  9. B. Hajduk, On the obstruction group to the existence of Riemannian metrics of positive scalar curvature, Proc. International Conf. on Algebraic Topology, Poznan 1989, S. Jackowski, R. Oliver, and K. Pawalowski, eds., Lecture Notes in Math., Springer-Verlag, Berlin and New York, pp. 62–72.

    Google Scholar 

  10. N. Hitchin, Harmonic spinors, Adv. in Math. 14 (1974), 1–55.

    Article  MathSciNet  Google Scholar 

  11. R. Jung, Ph.D. thesis, Univ. of Mainz, Germany, in preparation.

    Google Scholar 

  12. G. G. Kasparov, Equivariant KK-theory and the Novikov Conjecture, Invent. Math. 91 (1988), 147–201.

    Article  MathSciNet  Google Scholar 

  13. M. Kreck and S. Stolz, HP 2 -bundles and elliptic homology, Acta Mathematica 171 (1993), 231–261.

    Article  MathSciNet  Google Scholar 

  14. S. Kwasik and R. Schultz, Positive scalar curvature and periodic fundamental groups, Comment. Math. Helv. 65 (1990), 271–286.

    Article  MathSciNet  Google Scholar 

  15. H. B. Lawson and M.-L. Michelsohn, Spin geometry, Princeton Mathematical Series, 38, Princeton Univ. Press, Princeton, NJ, 1989.

    Google Scholar 

  16. A. Lichnerowicz, Spineurs harmoniques, C. R. Acad. Sci. Paris, Série A-B 257 (1963), 7–9.

    MathSciNet  MATH  Google Scholar 

  17. J. Rosenberg, C*-algebras, positive scalar curvature, and the Novikov Conjecture, II, Geometric Methods in Operator Algebras, H. Araki and E.G. Effros, eds., Pitman Research Notes in Math., no. 123, Longman/Wiley, Harlow, Essex, England and New York, 1986, pp. 341–374.

    Google Scholar 

  18. ——, C*-algebras, positive scalar curvature, and the Novikov Conjecture, III, Topology 25 (1986), 319–336.

    Article  MathSciNet  Google Scholar 

  19. J. Rosenberg and S. Stolz, Manifolds of positive scalar curvature, Algebraic Topology and its Applications (G. Carlsson, R. Cohen, W.-C. Hsiang, and J.D.S. Jones, eds.), M. S. R. I. Publications, vol. 27, Springer-Verlag, Berlin and New York, 1994, pp. 241–267.

    Chapter  Google Scholar 

  20. ——, A “stable” version of the Gromov-Lawson conjecture, to appear in the Proc. of the Cech Centennial Homotopy Theory Conference, Cont. Math. 181 (1995), 405–418.

    Google Scholar 

  21. ——, The stable classification of manifolds of positive scalar curvature, in preparation.

    Google Scholar 

  22. R. Schoen and S.-T. Yau, On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979), 159–183.

    Article  MathSciNet  Google Scholar 

  23. S. Stolz, Simply connected manifolds of positive scalar curvature, Ann. of Math. (2) 136 (1992), 511–540.

    Article  MathSciNet  Google Scholar 

  24. ——, Splitting certain MSpin-module spectra, Topology 33 (1994), 159–180.

    Article  MathSciNet  Google Scholar 

  25. ——, Concordance classes of positive scalar curvature metrics, in preparation.

    Google Scholar 

  26. C.T.C. Wall, Surgery on compact manifolds, Academic Press, London and New York. 1970.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäser Verlag, Basel, Switzerland

About this paper

Cite this paper

Stolz, S. (1995). Positive Scalar Curvature Metrics — Existence and Classification Questions. In: Chatterji, S.D. (eds) Proceedings of the International Congress of Mathematicians. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-9078-6_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9078-6_56

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9897-3

  • Online ISBN: 978-3-0348-9078-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics