Skip to main content

Electric organs and their innervation: A model system for the study of cholinergic function

  • Chapter
  • 169 Accesses

Part of the book series: Bioelectrochemistry: Principles and Practice ((BPP,volume 2))

Abstract

Electric organs and the ability to deliver an electric shock are found only in fish and their occurrence in a number of unrelated species provides a remarkable example of convergent evolution (Table 1). Electric organs consist of stacks of cells (electrocytes), usually, if not invariably, derived during embryonic development from myoblasts. When such cells are caused to discharge by the nerves supplying them, the transient post-synaptic potentials that they generate summate, in series and in parallel, causing a current to flow in the surrounding water. When this current is sufficient to stun prey, as with the elasmobranch electric rays of the family Torpedinidae and the Gymnotid eel Electrophorus electricus, a fresh-water teleost of the Amazon and other South American rivers, the organ is said to be strongly electric. When the discharge is feeble and serves as the basis for a system of electrolocation, as in the Gymnarchidae of African and the distantly related Gymnotidae of South American rivers, the organ is said to be weakly electric.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B Kramer, Electrocommunication in Teleost Fishes, Springer, Berlin, 1990.

    Google Scholar 

  2. A Mauro, J. Histor. Med. Allied Sci. 24 (1969) 140–150.

    Article  CAS  Google Scholar 

  3. CH Wu, Amer. Sci. 72 (1984) 598–607.

    Google Scholar 

  4. H Zimmermann, Funkt. Biol. Med. 4 (1985) 156–172.

    Google Scholar 

  5. VP Whittaker, Neurochem. Int. 14 (1989) 275–287.

    Article  CAS  Google Scholar 

  6. L Galvani, De Viribus Electricitatis in Motu Musculari, Instituti Scientiarum Bononensis, 1794.

    Google Scholar 

  7. A Volta, Phil. Trans. Roy. Soc. 90 (1800) 403–431.

    Article  Google Scholar 

  8. KE Rothschuh, Sudhoff’s Arch. f. Geschichte d. Med. u. Naturwiss. 44 (1960) 25–44.

    Google Scholar 

  9. JC McKendrick and P Stöhr, A Textbook of Physiology, James MacLehose and Sons, Glasgow, 1888.

    Google Scholar 

  10. F Gotch in Text-Book of Physiology, E Schafer (ed), Macmillan, New York, London, 1900, Vol. 2, pp. 561–572.

    Google Scholar 

  11. J Bernstein, Elektrobiologie, Vieweg, Braunschweig, 1912.

    Google Scholar 

  12. W Feldberg and A Fessard, J. Physiol. 101 (1942) 200–216.

    CAS  Google Scholar 

  13. D Nachmansohn and E Lederer, Bull. Soc. Chim. Biol. (Paris) 21 (1939) 797–808.

    CAS  Google Scholar 

  14. D Nachmansohn, Chemical and Molecular Basis of Nerve Activity, Academic Press, New York, 1959.

    Google Scholar 

  15. VP Whittaker, Trends Pharmacol. Sci. 7 (1986) 312–315.

    Article  CAS  Google Scholar 

  16. VP Whittaker, Hdbk. Exp. Pharmacol. 86 (1988) 3–22.

    Google Scholar 

  17. DV Agoston, GHC Dowe and VP Whittaker, J. Neurochem. 52 (1989) 1729–1740.

    Article  CAS  Google Scholar 

  18. HW Lissmann, Nature (Lond.) 167 (1951) 201–202.

    Article  CAS  Google Scholar 

  19. HW Lissmann, J. Exp. Biol. 35 (1958) 451–486.

    Google Scholar 

  20. L De Sanctis, Atti R. Acad. Sci. Fis. Mat. 5 (1873) 1–61.

    Google Scholar 

  21. A Babuchin, Arch. Anat. Physiol. Wiss. Med. 18 (1876) 501–542.

    Google Scholar 

  22. W Krause, Int. Monatsschrift f. Anat. u. Physiol. 4 (1887) 371–392.

    Google Scholar 

  23. J Ogneff, Arch. Physiol. (1897) 270–304.

    Google Scholar 

  24. G Fritsch, Die elektrischen Fische nach neuen Untersuchungen anatomisch-zoologisch dargestellt, von Veit, Leipzig, 1890.

    Google Scholar 

  25. GQ Fox and GP Richardson, J. Comp. Neurol. 179 (1978) 677–697.

    Article  CAS  Google Scholar 

  26. GQ Fox and GP Richardson, J. Comp. Neurol. 185 (1979) 293–316.

    Article  CAS  Google Scholar 

  27. W-D Krenz, T Tashiro, K Wächtler, VP Whittaker and V Witzemann, Neuroscience 5 (1980) 617–624.

    Article  CAS  Google Scholar 

  28. J Mellinger, P Belbenoit, M Ravaille and T Szabo, Dev. Biol. 67 (1978) 167–188.

    Article  CAS  Google Scholar 

  29. GP Richardson and GQ Fox, J. Comp. Neurol. 211 (1982) 331–352.

    Article  CAS  Google Scholar 

  30. V Witzemann, G Richardson and C Boustead, Neuroscience 8 (1983a) 333–349.

    Article  CAS  Google Scholar 

  31. V Witzemann, D Schmid and C Boustead, Eur. J. Biochem. 131 (1983b) 235–245.

    Article  CAS  Google Scholar 

  32. GP Richardson, W Fiedler and GQ Fox, Cell Tiss. Res. 247 (1987) 651–665.

    Article  CAS  Google Scholar 

  33. R Wagner, Abh. Kgl. Ges. Wiss. Göttingen 3 (1847) 141–166.

    Google Scholar 

  34. RJ Mathewson, A Mauro, E Amatniek and H Grundfest, Biol. Bull. 15 (1958) 126–135.

    Article  Google Scholar 

  35. GQ Fox, GP Richardson and C Kirk, J. Comp. Neurol. 236 (1985) 274–281.

    Article  CAS  Google Scholar 

  36. D Schmid, H Stadler and VP Whittaker, Eur. J. Biochem. 122 (1982) 633–639.

    Article  CAS  Google Scholar 

  37. CM Avio, Publ. Stat. Zool. Napoli 22 (1949) 40–56.

    Google Scholar 

  38. GP Richardson, B Rinschen and GQ Fox, J. Comp. Neurol. 231 (1985) 339–352.

    Article  CAS  Google Scholar 

  39. V Witzemann and C Boustead, J. Neurochem. 39 (1982) 747–755.

    Article  CAS  Google Scholar 

  40. JL Sikorav, E Krejci and J Massoulié, EMBO J. 6 (1987) 1865–1873.

    CAS  Google Scholar 

  41. JL Sussman, M Harel, F Frolav, C Oefner, A Goldman, L Toker and I Silman, Science 253 (1991) 872–879.

    Article  CAS  Google Scholar 

  42. S Swillens, M Ludgate, L Mercken, JE Dumont and G Vassart, Biochem. Biophys. Res. Comm. 137 (1986) 142–148.

    Article  CAS  Google Scholar 

  43. H Zimmermann and CR Denston, Brain Res. 111 (1976) 365–376.

    Article  CAS  Google Scholar 

  44. AG Johnels, Q. J. Microscop. Sci. 97 (1956) 455–463.

    Google Scholar 

  45. F Kirschbaum, Naturwissenschaften 70 (1983) 205–206.

    Article  CAS  Google Scholar 

  46. Pacini (1853) (quoted in [47] without reference).

    Google Scholar 

  47. H Grundfest, Progr. Biophys. Chem. 7 (1957) 1–85.

    CAS  Google Scholar 

  48. H Grundfest in Sharks, Skates and Rays, PW Gilberg, RF Mathewson and DP Rall (eds), Johns Hopkins Press, Baltimore, 1967, pp. 399–432.

    Google Scholar 

  49. MVL Bennett in Fish Physiology, WS Hoar and DJ Randall (eds), Academic Press, London, 1971, Vol. 5, pp. 347–491.

    Google Scholar 

  50. RD Keynes, MVL Bennett and H Grundfest in Bioelectrogenesis, C Chargas and AP de Carvallo (eds), Elsevier, Amsterdam, 1961, pp. 130–140.

    Google Scholar 

  51. K-B Augustinsson and AG Johnels, J. Physiol. (Lond.) 140 (1958) 498–500.

    CAS  Google Scholar 

  52. P Belbenoit, Z. vergl. Physiol. 61 (1970) 205–216.

    Article  Google Scholar 

  53. H Zimmermann and VP Whittaker, J. Neurochem. 22 (1974) 435–450.

    Article  CAS  Google Scholar 

  54. H Zimmermann and CR Denston, Neuroscience 2 (1977) 715–730.

    Article  CAS  Google Scholar 

  55. JB Suszkiw, Neuroscience 5 (1980) 1341–1349.

    Article  CAS  Google Scholar 

  56. P Ferretti and E Borroni, J. Neurochem. 42 (1984) 1085–1093.

    Article  CAS  Google Scholar 

  57. E Borroni, J. Neurochem. 43 (1984) 795–798.

    Article  CAS  Google Scholar 

  58. R Miledi, P Molinoff and LT Potter, Nature (Lond.) 229 (1971) 554–557.

    Article  CAS  Google Scholar 

  59. Y Dunant, L Eder and L Servetiadis-Hirt, J. Physiol. (Lond.) 298 (1980) 185–203.

    CAS  Google Scholar 

  60. B Soria, Q. J. Exp. Physiol. 68 (1983) 189–202.

    CAS  Google Scholar 

  61. L Erdelyi and WD Krenz, Comp. Biochem. Physiol. 79A (1984) 505–511.

    Article  CAS  Google Scholar 

  62. Y Dunant and D Muller, J. Physiol. (Lond.) 379 (1986) 461–478.

    CAS  Google Scholar 

  63. H Martins-Ferreira and A Conceiro, Ann. Acad. Bras. Cien. 23 (1951) 377.

    Google Scholar 

  64. CC Bell, J. Exp. Biol. 146 (1989) 229–253.

    CAS  Google Scholar 

  65. HH Zakon in Sensory Biology of Aquatic Animals, J Atema, RR Fay, AN Popper and WN Tavolga (eds), Springer, Berlin, 1988, pp. 813–850.

    Google Scholar 

  66. P Black-Cleworth, Anim. Behav. 3 (1970) 1–77.

    Google Scholar 

  67. MJ Dowdall, G Fox, K Wächtler, VP Whittaker and H Zimmermann, Cold Spring Harbor Symp. Quant. Biol. 40 (1975) 65–81.

    Google Scholar 

  68. LP Davies, VP Whittaker and H Zimmermann, Exp. Brain Res. 30 (1977) 493–510.

    Article  CAS  Google Scholar 

  69. M-L Kiene and H Stadler, EMBO J. 6 (1987) 2209–2215.

    CAS  Google Scholar 

  70. M Israël, R Manaranche, P Mastour-Franchon and N Morel, Biochem. J. 160 (1976) 113–115.

    Google Scholar 

  71. MJ Dowdall and H Zimmermann, Neuroscience 2 (1977) 405–421.

    Article  CAS  Google Scholar 

  72. DM Michaelson and M Sokolovsky, J. Neurochem. 30 (1978) 217–230.

    Article  CAS  Google Scholar 

  73. VP Whittaker, WB Essman and GHC Dowe, Biochem. J. 128 (1972) 833–846.

    CAS  Google Scholar 

  74. F-M Meunier, J. Physiol. 354 (1984) 121–137.

    CAS  Google Scholar 

  75. PJ Richardson and VP Whittaker, J. Neurochem. 36 (1981) 1536–1542.

    Article  CAS  Google Scholar 

  76. I Ducis and VP Whittaker, Biochim. Biophys. Acta 815 (1985) 109–127.

    Article  CAS  Google Scholar 

  77. RJ Rylett, J. Neurochem. 51 (1988) 1942–1945.

    Article  CAS  Google Scholar 

  78. RJ Rylett, J. Mol. Neurosci. 2 (1990) 85–90.

    Article  CAS  Google Scholar 

  79. M Knipper, J Strotmann, U Mädler, C Kahle and H Breer, Neurochem. Int. 14 (1989) 217–222.

    Article  CAS  Google Scholar 

  80. VP Whittaker and E Borroni, Hdbk. Exp. Pharmacol. 86 (1988) 447–463.

    Google Scholar 

  81. A Nagy, RR Baker, SJ Morris and VP Whittaker, Brain Res. 109 (1976) 285–309.

    Article  CAS  Google Scholar 

  82. W Volknandt, M Schläfer, F Bonzelius and H Zimmermann, EMBO J. 9 (1990) 2465–2470.

    CAS  Google Scholar 

  83. PE Giompres and VP Whittaker, Biochim. Biophys. Acta 882 (1986) 398–409.

    CAS  Google Scholar 

  84. H-H Füldner and H Stadler, Eur. J. Biochem. 121 (1982) 519–524.

    Article  Google Scholar 

  85. SK Yamagata and SM Parsons, J. Neurochem. 53 (1989) 1354–1362.

    Article  CAS  Google Scholar 

  86. YA Luqmani and PE Giompres, Neurosci. Lett. 23 (1981) 81–85.

    Article  CAS  Google Scholar 

  87. H Zimmermann and JT Bokor, Neurosci. Lett. 13 (1979) 319–324.

    Article  CAS  Google Scholar 

  88. M Weiler, I Roed and VP Whittaker, J. Neurochem. 38 (1982) 1187–1191.

    Article  CAS  Google Scholar 

  89. VP Whittaker, Ann. N.Y. Acad. Sci. 493 (1987) 77–91.

    Article  CAS  Google Scholar 

  90. H Zimmermann, MJ Dowdall and DA Lane, Neuroscience 4 (1979) 979–993.

    Article  CAS  Google Scholar 

  91. VP Whittaker, Brain Res. 551 (1990) 113–121.

    Article  Google Scholar 

  92. DV Agoston, GHC Dowe, W Fiedler, PE Giompres, IS Roed, JH Walker, VP Whittaker and T Yamaguchi, J. Neurochem. 47 (1986) 1584–1592.

    Article  CAS  Google Scholar 

  93. PE Giompres, H Zimmermann and VP Whittaker, Neuroscience 6 (1981) 775–785.

    Article  CAS  Google Scholar 

  94. YA Luqmani, G Sudlow and VP Whittaker, Neuroscience 5 (1980) 153–160.

    Article  CAS  Google Scholar 

  95. A Maelicke, Hdbk. Exp. Pharmacol. 86 (1988) 267–313.

    Google Scholar 

  96. RM Stroud, MP McCarthy and M Shuster, Biochemistry 29 (1990) 11009–11023.

    Article  CAS  Google Scholar 

  97. N Unwin, C Toyoshima and E Kubalek, J. Cell Biol. 107 (1988) 1123–1138.

    Article  CAS  Google Scholar 

  98. M Kasai and J-P Changeux, J. Membr. Biol. 6 (1971) 58–80.

    Article  CAS  Google Scholar 

  99. A Karlin and E Bartels, Biochim. Biophys. Acta 126 (1966) 525–535.

    Article  CAS  Google Scholar 

  100. J Massoulié and J-P Toutant, Hdbk. Exp. Pharmacol. 86 (1988) 167–224.

    Google Scholar 

  101. J-P Toutant and J Massoulié, Hdbk. Exp. Pharmacol. 86 (1988) 225–265.

    Google Scholar 

  102. VP Whittaker, The Cholinergic Neuron and its Target: the Electromotor System of the Electric Ray, Torpedo, as a Model, Birkhäuser-Boston Inc., Boston, MA, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Whittaker, V.P. (1995). Electric organs and their innervation: A model system for the study of cholinergic function. In: Walz, D., Berg, H., Milazzo, G. (eds) Bioelectrochemistry of Cells and Tissues. Bioelectrochemistry: Principles and Practice, vol 2. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9063-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9063-2_1

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9890-4

  • Online ISBN: 978-3-0348-9063-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics