Screening and characterization of new enzymes for biosensing and analytics

  • W. Hummel
Part of the EXS book series (EXS, volume 80)

Summary

The development of new or improved analytical methods requires new enzymes. Screening techniques utilizing enrichment cultures and rapid assay methods supported by automated or miniaturized methods are useful tools to detect new enzyme producers. Notably, oxidoreductases are well suited for analytical purposes. The NAD(P)- and oxygen-independent quinoprotein dehydrogenases with a covalently bound redox cofactor can be used advantageously for the development of biosensors. Examples are given of selective enrichment methods used in screening for useful enzyme-producing microorganisms. Enrichment under chemostatic conditions proved to be successful because enzymes with a remarkably high affinity against the analyte could be obtained. This is demonstrated by the screening of a trimethylamine-converting enzyme. The frequently observed high selectivity of these enzymes against the substrate is demonstrated in a few examples. In exploitation of these new oxidoreductases, new analytical methods were developed which are useful for the detection and during monitoring of phenylketonuria (PKU) or maple syrup urine disease (MSUD).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Cheetham, P.S.J. (1987) Screening for novel biocatalysts. Enz. Microb. Technol. 9: 194–213.CrossRefGoogle Scholar
  2. D’Costa, E.J., Higgins, I.J. and Turner, A.P.F. (1986) Qunioprotein glucose dehydrogenase and ist application in an amperometric glucose sens. Biosensors 2: 71–87.PubMedCrossRefGoogle Scholar
  3. Duine, J.A. (1991) Quinoproteins: enzymes containing the quinoid cofactor pyrroloquinoline quinone, topaquinone or tryptophan-tryptophan quinone. Eur. J. Biochem. 200: 271–284.PubMedCrossRefGoogle Scholar
  4. Duine, J.A. and Jongejan, J.A. (1989) Quinoproteins, enzymes with pyrrolo-quinoline quinone as cofactor. Ann. Rev. Biochem. 58: 403–426.PubMedCrossRefGoogle Scholar
  5. Duine, J.A., Frank, Jzn.J. and Verwiel, P.E.J. (1980) Structure and activity of the prosthetic group of methanol dehydrogenase. Eur. J. Biochem. 108: 187–192.PubMedCrossRefGoogle Scholar
  6. Elander, R.P. (1987) Microbial screening, selection and strian improvement. In: J. Bu’Lock and B. Kristiansen (eds): Basic Biotechnology. Academic Press, London, pp 217–251.Google Scholar
  7. Goodhue, C.T. (1982) The methodoly of microbial transformation of organic compounds. In: J.P Rosazza (ed): Microbial transformations ofbioactive compounds. Vol I. CRC Press, Boca Raton, Florida, pp 9–44.Google Scholar
  8. Guthrie, R. and Susi, A. (1963) Pediatrics 32: 338–343.PubMedGoogle Scholar
  9. Hummel, W. and Kula, M.-R. (1989) Simple method for small-scale disruption of bacteria and yeasts. J. Microbiol. Meth. 9: 201–209.CrossRefGoogle Scholar
  10. Hummel, W., Weiss, N. and Kula, M.-R. (1984) Isolation and characterization of a bacterium possessing L-phenylalanine dehydrogenase activity. Arch. Microbiol. 137: 47–52.CrossRefGoogle Scholar
  11. Hummel, W., Schütte, H. and Kula, M.-R. (1985) D-2-Hydroxyisocaproate dehydrogenase from Lactobacillus casei - A new enzyme suitable for the stereospecific reduction of 2-ketocar- boxylic acids. Appl. Microbiol. Biotechnol. 21: 7–15.CrossRefGoogle Scholar
  12. Hummel, W., Schmidt, E., Wandrey, C. and Kula, M.-R. (1986) L-Phenylalanine dehydrogenase from Brevibacteri um sp. for production of L-phenylalanine by reductive amination of phenyl- pyruvate. Appl. Microbiol. Biotechnol. 25: 175–185.CrossRefGoogle Scholar
  13. Hummel, W, Schmidt, E., Schütte, H. and Kula, M.-R. ( 1987 a) Isolation of microorganisms containing high levels of phenylalanine dehydrogenase. Proc. Biochemical Engineering, Fischer Verlag, Stuttgart, pp 392–395.Google Scholar
  14. Hummel, W., Schütte, H., Schmidt, E., Wandrey, C. and Kula, M.-R. (1987b) Isolation of L-phenylalanine dehydrogenase from Rhodococcus sp. M4 and its application for the production of L-phenylalanine. Appl. Microbiol. Biotechnol. 26: 409–416.CrossRefGoogle Scholar
  15. Hummel, W., Schütte, H. and Kula, M.-R. (1988 a) D-(-)-Mandelic acid dehydrogenase from Lactobacillus curvatus. Appl. Microbiol. Biotechnol. 28: 433–439.CrossRefGoogle Scholar
  16. Hummel, W., Schütte, H. and Kula, M.-R. (1988b) Enzymatic determination of L-phenylalanine and phenylpyruvate with L-phenylalanine dehydrogenase. Anal. Biochem. 170:397–401.PubMedCrossRefGoogle Scholar
  17. Hummel, W., Tauschensky, S., Spohn, U., Wendel, U. and Langenbeck, U. (1989) Towards Home-Monitoring and screening of phenylketonuria by biosensors. Studies on flow-injection analysis. In: R.D. Schmid and F. Scheller (eds): Biosensors: Applications in Medicine, Environmental protection and process control. GBF-Monographs 13. VCH Verlagsgesellschaft, Weinheini, pp 313–318.Google Scholar
  18. Hummel, W., Wendel, U. and Sting, S. (1992) Biochemical characterization of a highly specific trimethylamine dehydrogenase suited for the application in biosensors. In: F. Scheller and R.D. Schmid (eds) Biosensors: Fundamentals, Technologies and Applications. GBF Monographs 17. VCH Publishers, Weinheim, pp 381–384.Google Scholar
  19. Morin, A., Hummel, W. and Kula, M.-R. (1986) Rapid detection of microbial hydantoinase on solid medium. Biotechnol. Lett. 8: 571–576.CrossRefGoogle Scholar
  20. Morin, A., Hummel, W. and Kula, M.-R. (1987) Enrichment and selection of hydantoinase producing microorganism. J. Gen. Microbiol. 133: 1201–1207.Google Scholar
  21. Schadewaldt, R, Hummel, W., Trautvetter, U. and Wendel, U. (1989) A convenient enzymatic method for the determination of 4-methyl-2-oxopentanoate in plasma: Comparison with High Performance Liquid Chromatographic analysis. Clin. Chim. Acta 183: 171–182.PubMedCrossRefGoogle Scholar
  22. Schadewaldt, P., Hummel, W, Wendel, U. and Adelmeyer, F. (1995) Enzymatic method for determination of branched-chain amino acid aminotransferase activity. Anal. Biochem. 230: 199–204.PubMedCrossRefGoogle Scholar
  23. Schütte, H., Hummel, W. and Kula, M.-R. (1984) L-Hydroxyisocaproate dehydrogenase - a new enzyme from Lactobacillus confusus for the stereospecific reduction of 2-ketocarboxy- lic acids. Appl. Microbiol. Biotechnol. 19: 167–176.CrossRefGoogle Scholar
  24. Schütte, H., Hummel, W. and Kula, M.-R. (1985) Improved enzyme screening by automated fast protein liquid chromatography. Anal. Biochem. 151: 547–553.PubMedCrossRefGoogle Scholar
  25. Wendel, U., Hummel, W. and Langenbeck, U. (1989) Monitoring of Phenylketonuria: A colorimetric method for the determination of plasma phenylalanine using L-phenylalanine dehydrogenase. Anal. Biochem. 180: 91–94.PubMedCrossRefGoogle Scholar
  26. Wendel, U., Koppelkamm, M, Hummel, W., Sander, J. and Langenbeck, U. (1990 a) A new approch to the newborn screening for hyperphenylalaninemias: Use of L-phenylalanine dehydrogenase and microtiter plates. Clin. Chim. Acta 192: 165–170.Google Scholar
  27. Wendel, U., Özalp, I., Langenbeck, U. and Hummel, W. (1990b) Phenylketonuria in Turkey: Experience with an enzymatic colorimetric test for measurement of serum phenylalanine. J. InheritedMetab. Disease 13: 295–297.CrossRefGoogle Scholar
  28. Wendel, U., Koppelkamm, M. and Hummel, W. (1991) Enzymatic phenylalanine estimation for the management of patients with phenylketonuria. Clin. Chim. Acta 201: 95–98.PubMedCrossRefGoogle Scholar
  29. Yamazaki, Y., Hummel, W. and Kula, M.-R. (1987) Ein neues Verfahren zum direkten Nachweis mikrobieller Aminoacylaseaktivität auf Agarplatten. Z. Naturforsch. 42c: 1082–1088.Google Scholar
  30. Yamazaki, Y. and Kula, M.-R. (1987) Entwicklung neuer Plattentests zum Nachweis mikrobieller Hydrolysen von Estern und Oxidation von 2-Hydroxycarbonsäuren. Z Naturforsch. 42c: 1187–1192.Google Scholar

Copyright information

© Birkhäuser Verlag 1997

Authors and Affiliations

  • W. Hummel
    • 1
  1. 1.Institut für EnzymtechnologieHeinrich-Heine-Universität DüsseldorfJülichGermany

Personalised recommendations