Skip to main content

Control of angiogenesis by the pericyte: Molecular mechanisms and significance

  • Chapter
Regulation of Angiogenesis

Part of the book series: Experientia Supplementum ((EXS,volume 79))

Summary

The microvasculature consists of endothelial cells (EC) with albuminally located pericytes. A number of clinical and experimental observations suggest that pericytes contribute to the regulation of microvascular growth and function. EC and pericytes appear to have a variety of means whereby they may influence one another, including soluble growth factors, gap junctions and adhesion molecules, to name a few. Co-culture systems have provided a good deal of evidence to support the concept that these two cells interact and that these communications are central to vessel assembly, growth control and normal function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonelli-Orlidge, A., Saunders, K.B., Smith, S.R. and D’Amore, P.A. (1989) An activated form of TGF-β is produced by cocultures of endothelial cells and pericytes. Proc. Natl. Acad. Sci. USA 86:4544–4548.

    Article  PubMed  CAS  Google Scholar 

  • Bagavandoss, P. and Wilks, J.W. (1990) Specific inhibition of endothelial cell proliferation by thrombospondin. Biochem. Biophys. Res. Comm. 170:867–872.

    Article  PubMed  CAS  Google Scholar 

  • Barrett, T.B., Gajdusek, C.M., Schwartz, S.M., McDougall, J.K. and Benditt, E.P. (1984) Expression of the sis gene by endothelial cells in culture in vivo. Proc. Natl. Acad. Sci. USA 81:6772–6774.

    Article  PubMed  CAS  Google Scholar 

  • Bruzzone, R., Haefliger, J.-A., Gimlich, R.L. and Paul, D.L. (1993) Connexin 40, a component or gap junctions in vascular endothelium, is restricted in its ability to interact with other connexins. Mol. Biol. 4:7–20.

    CAS  Google Scholar 

  • Coffin, J.D. and Poole, T.J. (1988) Embryonic vascular development: immunohistochemical identification of the origin and subsequent morphogenesis of the major vessel primordia in quail embryo. Development 102:1–14.

    Google Scholar 

  • Crocker, D.J., Murad, T.M. and Greer, J.C. (1970) Role of the pericyte in wound healing. An ultrastructural study. Exp. Mol. Pathol. 13:51–65.

    CAS  Google Scholar 

  • Dameron, K.M., Volpert, O.V, Tainsky, M.A. and Bouck, N. (1994) Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265:1582–1584.

    Article  PubMed  CAS  Google Scholar 

  • de Venecia, G., Davis, M. and Engerman, R. (1976) Clinicopathologic correlations in diabetic retinopathy. Arch. Ophthalmol. 94:1766–1778.

    PubMed  Google Scholar 

  • Denekamp, J. (1982) Endothelial cell proliferation as a novel approach to targeting tumour therapy. Br. J. Cancer 45:136–139.

    Article  PubMed  CAS  Google Scholar 

  • Desmouliere, A, Genioz, A., Gabbiani, F. and Gabbiani, G. (1993) Transforming growth factor-ß1 induces α-smooth muscle cell actin expression in granulation tissue myofibroblasts and inquiescent and growing cultured fibroblasts. J. Cell Biol. 122:103–111.

    Article  PubMed  CAS  Google Scholar 

  • Dodge, A.B., Gabriels, J.E. and D’Amore, RA. (1992) Endothelial cells modulate mural cell proliferation and migration in vitro. J. Cell. Biochem. 16A:49.

    Google Scholar 

  • Doetschman, T.A., Gossler, A. and Kemler, R. (1987) Blastocyst-derived embryonic stem cells as a model for embryogenesis. In: W. Feichtingen and P. Kemeter (eds): Future Aspects in Human In Vitro Fertilization. Springer-Verlag, Berlin, pp 187–195.

    Google Scholar 

  • Engerman, R.L., Pfaffenbach, D. and Davis, M.D. (1967) Cell turnover of capillaries. Lab. Invest. 17:738–743.

    PubMed  CAS  Google Scholar 

  • Fillinger, M.F, O’Connor, S.E., Wagner, R.J. and Cronenwett, J.L. (1993) The effect of endothelial cell coculture on smooth muscle cell proliferation. J. Vase. Surg. 17: 1058–1068.

    Article  CAS  Google Scholar 

  • Folkman, J. (1992) Angiogenesis — Retrospect and outlook. In: R. Steiner, RB. Weisz and R. Langer (eds): Angiogenesis: Key Principles. Birkhäuser Verlag, Basel, Switzerland, pp 4–13.

    Google Scholar 

  • Folkman, J. (1995) Angiogenesis in cancer, vascular, rheumatoid and other diseases. Nature Med. 1:27–31.

    Article  PubMed  CAS  Google Scholar 

  • Good, D.J, Polverini, P.J, Rastinejad, F, Le Beau, M.M, Lemons, R.S, Frazier, WA. and Bouck, N.P. (1990) A tumor suppressor dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc. Natl. Acad. Sci. USA 87:6624–6628.

    Article  PubMed  CAS  Google Scholar 

  • Guthrie, S.C. and Gilula, N.B. (1989) Gap junction communication and development. Trends in Neurosciences 12:12–16.

    Article  PubMed  CAS  Google Scholar 

  • Holmgren, L, Glaser, A, Pfeifer-Ohlsson, S. and Ohlsson, R. (1991) Angiogenesis during human extra-embryonic development involves the spatiotemporal control of PDGF ligand and receptor gene expression. Development 113:749–754.

    PubMed  CAS  Google Scholar 

  • Hudlicka, O, Brown, M. and Egginton, S. (1992) Angiogenesis in skeletal and cardiac muscle. Physiol. Rev. 72:369–417.

    PubMed  CAS  Google Scholar 

  • Kuwabara, T. and Cogan, D.G. (1963) Retinal vascular patterns. VI. Mural cells of the retinal capillaries. Arch. Ophthalmol. 69:492–502.

    CAS  Google Scholar 

  • Larson, DM, Carson, M.P. and Haudenschild, C.C. (1987) Junction transfer of small molecules in cultured bovine brain microvascular endothelial cells and pericytes. Microvasc. Res. 34:184–199.

    Article  PubMed  CAS  Google Scholar 

  • Liaw, L. and Schwartz, S.M. (1993) Comparison of gene expression in bovine aortic endothelium in vivo versus in vitro. Arteriosclerosis and Thrombosis 13:985–993.

    Article  PubMed  CAS  Google Scholar 

  • Little, T.L, Beyer, E.C. and Duling, B.R. (1995) Connexin 43 and connexin 40 gap junction proteins are present in arteriolar smooth muscle and endothelium in vivo. Am. J. Physiol. 268:H729–739.

    PubMed  CAS  Google Scholar 

  • Nakamura, H. (1988) Electron microscopic study of the prenatal development of the thoracic aortia in the rat. Am. J. Anat. 181:406–418.

    Article  PubMed  CAS  Google Scholar 

  • Nehls, V, Denzer, K. and Drenckhahn, D. (1992) Pericyte involvement in capillary sprouting during angiogenesis in situ. Cell Tissue Res. 270:469–474.

    Article  PubMed  CAS  Google Scholar 

  • Noden, D.M. (1989) Embryonic origins and assembly of blood vessels. Am. Res. Respir. Dis. 140:1097–1103.

    CAS  Google Scholar 

  • Orlidge, A. and D’Amore, P.A. (1987) Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. J. Cell Biol. 105:1455–1462.

    Article  PubMed  CAS  Google Scholar 

  • Pardanaud, L, Yassine, F. and Dieterlen-Lièvre, F. (1989) Relationship between vasculogenesis, angiogenesis and haemopoiesis during avian ontogeny. Development 105:473–485.

    PubMed  CAS  Google Scholar 

  • Patz, A. (1982) Clinical and experimental studies on retinal neovascularization. Am. J. Ophthalmol. 94:715–743.

    Article  PubMed  CAS  Google Scholar 

  • Reed, K.E, Westphale, E.M, Larson, D.M., Wang, H.-Z, Veenstra, R.D. and Beyer, E.C. (1993) Molecular cloning and functional expression of human connexin 37, and endothelial gap junction protein. J. Clin. Invest. 91:997–1004.

    Article  PubMed  CAS  Google Scholar 

  • Robison, WG., Jr., Magata, M, Tillis, T.N, Laver, N. and Kinoshita, J.H. (1989) Aldose reductase and pericyte-endothelial cells contacts in retina and optic nerve. Invest. Ophthalmol. Vis. Sci. 30:2293–2299.

    PubMed  Google Scholar 

  • Sato, Y, Okada, F, Abe, M, Seguchi, T, Kuwano, M, Sato, S, Furuya, A, Hanai, N. and Tamaoki, T. (1993) The mechanism for the activation of latent TGF-ß during co-culture of endothelial cells and smooth muscle cells. Cell-type specific targeting of latent TGF-ß to smooth muscle cells. J. Cell Biol. 123:1249–1254.

    CAS  Google Scholar 

  • Sato, Y and Rifkin, D.B. (1989) Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-ß-l-like molecule by plasmin during co-culture. J. Cell Biol. 109:309–315.

    Article  PubMed  CAS  Google Scholar 

  • Sato, Y, Tsuboi, R, Lyons, R, Moses, H. and Rifkin, D.B. (1990) Characterization of the activation of latent TGF-ß by co-cultures of endothelial cells and pericytes or smooth muscle cells: a self-regulating system. J. Cell Biol. 111:757–763.

    Article  PubMed  CAS  Google Scholar 

  • Segal, S.S. and Bény, J.-L. (1992) Intracellular recording and dye transfer in arterioles during blood flow control. Am. J. Physiol. 263:H 1–7.

    Google Scholar 

  • Sims, D., Hörne, M.M., Creighan, M. and Donald, A. (1994) Heterogeneity of pericyte populations in equine skeletal muscle and dermal microvessels: A quantitative study. Anat. Histol. Embryol 23:232–238.

    Article  PubMed  CAS  Google Scholar 

  • Speiser, P., Gittelsohn, A.M. and Patz, A. (1968) Studies on diabetic retinopathy. III. Influence of diabetes on intramural pericytes. Arch. Ophthalmol. 80:332–337.

    CAS  Google Scholar 

  • Stone, I, Itin, A., Alon, T., Pe’er, J., Gnessin, H., Chan-Ling, T. and Keshet, E. (1995) Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J. Neurosci. 15:4738–4747.

    PubMed  CAS  Google Scholar 

  • Sweet, E., Abraham, E.H. and D’Amore, P.A. (1988) Functional evidence of gay junctions between capillary endothelial cells and periutes in vitro. Invest. Ophthal mol Vis. Sci. 29:109 a.

    Google Scholar 

  • Tilton, R.G., Faller, A.M., Hoffman, PL., Kilo, C. and Williamson, J.R. (1987) Acellular capillaries and increased pericyte degeneration in the diabetic extremity. Front Diabetes 8:186–189.

    Google Scholar 

  • Traub, O., Eckert, R., Lichtenberg-Frate, H., Elgfang, C, Bastide, B., Scheidtmann, K.H., Hulser, D.F. and Willecke, K. (1994) Immunochemical and electrophysiological characterization of murine connexin 40 and -43 in mouse tissues and transfected human cells. Eur. J. Cell Biol. 53:101–112.

    Google Scholar 

  • Verbeek, M.M., Otte-Höller, I., Wesseling, P., Ruiter, D.J. and de Waal, R.M.W. (1994) Induction of α-smooth muscle actin expression in cultured human brain pericytes by transforming growth factor-ß. Am. J. Pathol 144:372–382.

    PubMed  CAS  Google Scholar 

  • Willems, C.H., Astaldi, G.C.B., De Groot, P.G., Janssen, M.C., Gonsalvez, M.D., Zeulemaker, W.R, Van Mourik, J.A. and Van Aken, W.G. (1982) Media conditioned by cultured human vascular endothelial cells inhibit the growth of vascular smooth muscle cells. Exp. Cell Res. 139:191–197.

    Article  PubMed  CAS  Google Scholar 

  • Williams, L.T. (1989) Signal transduction by the platelet-derived growth factor receptor. Science 243:1564–1570.

    Article  PubMed  CAS  Google Scholar 

  • Zerwes, H.-G. and Risau, W. (1987) Polarized secretion of a platelet-derived growth factor-like chemotactic factor by endothelial cells in vitro. J. Cell Biol 105:2037–2041.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Birkhäuser Verlag Basel, Switzerland

About this chapter

Cite this chapter

Hirschi, K.K., D’Amore, P.A. (1997). Control of angiogenesis by the pericyte: Molecular mechanisms and significance. In: Goldberg, I.D., Rosen, E.M. (eds) Regulation of Angiogenesis. Experientia Supplementum, vol 79. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9006-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9006-9_18

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9864-5

  • Online ISBN: 978-3-0348-9006-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics