Skip to main content

Abstract

Ozone (03) is a powerful oxidizing agent which is classified as a “secondary air pollutant”. Secondary air pollutants are not emitted into the atmosphere but formed from subsequent atmospheric chemical reactions of primary pollutants (nitrogen dioxide, sulfur dioxide, particles, carbon monoxide, lead).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mustafa MG. Biochemical basis of ozone toxicity. Free Radic Biol Med 1990; 9: 245–265.

    Article  PubMed  CAS  Google Scholar 

  2. Steinberg JJ, Gleeson JL, Gil D. The pathobiology of ozone-induced damage. Arch Environ Health 1990; 45: 80–87.

    Article  PubMed  CAS  Google Scholar 

  3. Fetner RH. Ozone-induced chromosome breakage in human cell cultures. Nature 1962; 194: 793–794.

    Article  PubMed  CAS  Google Scholar 

  4. Fetner RH. Chromosome breakage in Vicia faba by ozone. Nature 1958; 181: 504–505.

    Article  Google Scholar 

  5. Anonymous. National primary and secondary ambient air quality standards. Fed Register 1971; 36: 8187.

    Google Scholar 

  6. Padgett J, Richmond H. The process of establishing and revising National Ambient Air Quality Standards. Journal of the Air Pollution Control Association 1983; 33: 13–16.

    PubMed  CAS  Google Scholar 

  7. Wardlaw AJ. The role of air pollution in asthma. Clin Exp Allergy 1993; 23: 81–96.

    Article  PubMed  CAS  Google Scholar 

  8. Baker PE, Cummingham SJ, Becker EW, Colome SD, Wilson AL. An overview of the residential indoor air quality characterization study of nitrogen dioxide. In: Indoor air ’87 Proceedings of the 4th international conference on indoor air quality and climate. Berlin, Germany: Institute for Water, Soil and Air Hygiene, 1987; 395–399.

    Google Scholar 

  9. Hayes SR. Estimating the effect of being indoors on total personal exposure to outdoor air pollution. Journal of the Air Pollution Control Association 1989; 39: 1453–1461.

    CAS  Google Scholar 

  10. Anonymous. Ozone: too much in the wrong place. Lancet 1991; 338: 221–222. Editorial published erratum appears in Lancet 1991 Aug 3; 338 (8762): 326 comment.

    Google Scholar 

  11. Great Britain Ag. Sulphur dioxide, acid aerosols, and particulates. London: HMSO, 1992.

    Google Scholar 

  12. Lioy PJ. Exposure assessment of oxidant gases and acidic aerosols. Ann Rev Public Health 1989; 10: 69–84.

    Article  CAS  Google Scholar 

  13. Lioy PJ, Dyba RV. Tropospheric ozone: the dynamics of human exposure. Toxicol Ind Health 1989; 5: 493–504.

    PubMed  CAS  Google Scholar 

  14. Lee WCP. Elcar company report. In: Elcar Int Ltd, ed. Ozone. Montreal: Elcar Int. Ltd. 1971: 1–7.

    Google Scholar 

  15. Gerrity TR, Weaver RA, Bernsten J, House DE, O’Neil JJ. Extrathoracic and intrathoracic removal of 03 in tidal-breathing humans. J Appl Physiol 1988; 65: 393–400.

    PubMed  CAS  Google Scholar 

  16. Adams WC, Schelegle ES, Shaffrath JD. Oral and oronasal breathing continuous exercise produce similar responses to ozone inhalation. Arch Environ Health 1989; 44: 311–316.

    Article  PubMed  CAS  Google Scholar 

  17. Dolvich J, O’Byrne P, Hargreave FE. Airway hyperresponsiveness: mechanisms and relevance. Pediat Allergy Immunol 1992; 3: 163–170.

    Article  Google Scholar 

  18. Juniper EF, Frith PA, Hargreave FE. Airway responsiveness to histamine and methacholine: relationship to minimum treatment to control symptoms of asthma. Thorax 1981; 36: 575–579.

    Article  PubMed  CAS  Google Scholar 

  19. Ramsdale EH, Morris MM, Roberts RS, Hargreave FE. Asymptomatic bronchial hyperresponsiveness in rhinitis. J Allergy Clin Immunol 1985; 75: 573–577.

    Article  PubMed  CAS  Google Scholar 

  20. Hargreave FE, Ryan G, Thomson NC, O’Byrne PM, Latimer K, Juniper EF, et al. Bronchial responsiveness to histamine or methacholine in asthma: measurement and clinical significance. J Allergy Clin Immunol 1981; 68: 347–355.

    Article  PubMed  CAS  Google Scholar 

  21. Holtzman MJ, Fabbri LM, Skoogh BE, O’Byrne PM, Walters EH, Aizawa H, et al. Time course of airway hyperresponsiveness induced by ozone in dogs. J Appl Physiol 1983; 55: 1232–1236.

    PubMed  CAS  Google Scholar 

  22. Abraham WM, Januszkiewicz AJ, Mingle M, Welker M, Wanner A, Sackner MA. Sensitivity of bronchoprovocation and tracheal mucous velocity in detecting airway response to 03. J Appl Physiol 1980; 48: 93.

    Google Scholar 

  23. Evans TW, Brokaw JJ, Chung KF, Nadel JA, McDonald DM. Ozone-induced bronchial hyperresponsiveness in the rat is not accompanied by neutrophil influx or increased vascular permeability in the trachea. Am Rev Respir Dis 1988; 138: 140–144.

    Article  PubMed  CAS  Google Scholar 

  24. Nishikawa M, Suzuki S, Ikeda H, Fukuda T, Suzuki J, Okubo T. Dose-response relationship of ozone-induced airway hyperresponsiveness in unanesthetized guinea pigs. J Toxicol Environ Health 1990; 30: 123–134.

    Article  PubMed  CAS  Google Scholar 

  25. Woolcock AJ, Salome CM, Yan K. The shape of the dose-response curve to histamine in asthmatic and normal subjects. Am Rev Respair Dis 1984; 130: 71–75.

    CAS  Google Scholar 

  26. Sterk PJ, Daniel EE, Zamel N, Hargreave FE. Limited bronchoconstriction to methacholine using partial flow-volume curves in nonasthmatic subjects. Am Rev Respir Dis 1985; 132: 272–277.

    PubMed  CAS  Google Scholar 

  27. Sterk PJ, Bel EH. The shape of the dose-response curve to inhaled bronchoconstrictor agents in asthma and in chronic obstructive pulmonary disease. Am Rev Respir Dis 1991; 143: 1433–1437.

    PubMed  CAS  Google Scholar 

  28. Borek C, Mehlman MA. Evalution of health effects toxicity and biochemical mechanisms of ozone. In: Lee SD, Mustafa MG, Mehlman MA, eds. The biomedical effects of ozone and related photochemical oxidants. Princeton: Princeton Scientific Publishers, 1983; 325–361.

    Google Scholar 

  29. Mustafa MG, Elsayed NM, Graham JA, Gardner DE. Effects of ozone exposure on lung metabolism, influence of animal age, species, and exposure conditions. In: Lee SD, Mustafa MG, Mehlman MA, eds. The biomedical effects of ozone and related photochemical oxidants. Princeton: Princeton Scientific Publishers, 1983: 57–73.

    Google Scholar 

  30. Jones RA, Jenkins LJ, Jr., Coon RA, Siegel J. Effects of long-term continuous inhalation of ozone on experimental animals. Toxicol Appl Pharmacol 1970; 17: 189–202.

    Article  PubMed  CAS  Google Scholar 

  31. Asbury C, Coler R. Toxicity of dissolved ozone to fish eggs and larvae. J Water Pollution Control Federation 1980; 52: 1990–1996.

    CAS  Google Scholar 

  32. Gunnison AF, Finkelstein I, Weideman P, Su WY, Sobo M, Schlesinger RB. Age-dependent effect of ozone on pulmonary eicosanoid metabolism in rabbits and rats. Fund Appl Toxicol 1990; 15: 779–790.

    Article  CAS  Google Scholar 

  33. Oosting RS, Van Golde LM, Verhoef J, Van Bree L. Species differences in impairment and recovery of alveolar macrophage functions following single and repeated ozone exposures. Toxicol Appl Pharmacol 1991; 110: 170–178.

    Article  PubMed  CAS  Google Scholar 

  34. McNerney JM, MacEwen JD. Comparative toxicity studies at reduced and ambient pressures: I. Acute response. Am Ind Hyg Assoc J 1965; 26: 568–573.

    Article  PubMed  CAS  Google Scholar 

  35. Gilmour MI, Hmieleski RR, Stafford EA, Jakab GJ. Suppression and recovery of the alveolar macrophage phagocytic system during continuous exposure to 0.5 ppm ozone. Exp Lung Res 1991; 17: 547–558.

    Article  PubMed  CAS  Google Scholar 

  36. Li AF, Richters A. Ambient level ozone effects on subpopulations of thymocytes and spleen T lymphocytes. Arch Environ Health 1991; 46: 57–63.

    Article  PubMed  CAS  Google Scholar 

  37. Fujimaki H. Impairment of humoral immune responses in mice exposed to nitrogen dioxide and ozone mixtures. Environ Res 1989; 48: 211–217.

    Article  PubMed  CAS  Google Scholar 

  38. Fujimaki H, Kawagoe A. Enhanced antibody production in W/Wv mice exposed to ozone. Toxicol Lett 1990; 53: 343–347.

    Article  PubMed  CAS  Google Scholar 

  39. Goodman JW, FE Peter Fizaine, Shinpock SG, Hall EA, Fahmie DJ. Immunologic and hematologic consequences in mice of exposure to ozone. J Environ Pathol Toxical Oncol 1989; 9: 243–252.

    CAS  Google Scholar 

  40. Kleeberger SR, Bassett DJ, Jakab GJ, Levitt RC. A genetic model for evaluation of susceptibility to ozone-induced inflammation. Am J Physiol 1990; 258: L313–L320.

    PubMed  CAS  Google Scholar 

  41. Mautz WJ, Bufaolino C. Breathing pattern and metabolic rate responses of rats exposed to ozone. Respir Physiol 1989; 76: 69–77.

    Article  PubMed  CAS  Google Scholar 

  42. Gordon T, Taylor BF, Amdur MO. Ozone inhibition of tissue Cholinesterase in guinea pigs. Arch Environ Health 1981; 36: 284–288.

    PubMed  CAS  Google Scholar 

  43. Hotchkiss JA, Harkema JR, Sun JD, Henderson RF. Comparison of acute ozone–induced nasal and pulmonary inflammatory responses in rats. Toxicol Appl Pharmacol 1989; 98: 289–302.

    Article  PubMed  CAS  Google Scholar 

  44. Hotchkiss JA, Harkema JR, Kirkpatrick DT, Henderson RF. Response of rat alveolar macrophages to ozone: quantitative assessment of population size, morphology, and proliferation following acute exposure. Exp Lung Res 1989; 15: 1–16.

    Article  PubMed  CAS  Google Scholar 

  45. Pino MV, Stovall MY, Levin JR, Devlin RB, Koren HS, Hyde DM. Acute ozone–induced lung injury in neutrophil-depleted rats. Toxicol Appl Pharmacol 1992; 114: 268–276.

    Article  PubMed  CAS  Google Scholar 

  46. Joad JP, Brie JM, Pino MV, Hyde DM, McDonald RJ. Effects of ozone and neutrophils on function and morphology of the isolated rat lung. Am Rev Respir Dis 1993; 147: 1578–1584.

    PubMed  CAS  Google Scholar 

  47. Driscoll KE, Vollmuth TA, Schlesinger RB. Acute and subchronic ozone inhalation in the rabbit: response of alveolar macrophages. J Toxicol Environ Health 1987; 21: 27–43.

    Article  PubMed  CAS  Google Scholar 

  48. Koren HS, Devlin RB, Graham DE, Mann R, McGee MP, Horstman DH, et al. Ozone-induced inflammation in the lower airways of human subjects. Am Rev Respir Dis 1989; 139: 407–415.

    Article  PubMed  CAS  Google Scholar 

  49. Pino MV, Levin JR, Stovall MY, Hyde DM. Pulmonary inflammatory epithelial injury in response to acute ozone exposure in the rat. J Appl Pharmacol 1992; 112: 64–72.

    Article  CAS  Google Scholar 

  50. Mudd JB, Freeman BA. Reaction of ozone with biological membranes. In: Lee SD, ed. Biochemical effects of environmental pollutants. Ann Arbor: Ann Arbor Science Publishers, 1977: 97–133.

    Google Scholar 

  51. Boorman GA, Schwartz LW, Dungworth DL. Pulmonary effects of prolonged ozone insult in rats. Morphometric evaluation of the central acinus. Lab Invest 1980; 43: 108–115.

    PubMed  CAS  Google Scholar 

  52. Plopper CG, Chow CK, Dungworth DL, Brummer M, Nemeth TJ. Effect of low level of ozone on rat lungs. II. Morphological responses during recovery and re-exposure. Exp Mol Pathol 1978; 29: 400–411.

    Article  PubMed  CAS  Google Scholar 

  53. Moore PF, Schwartz LW. Morphological effects of prolonged exposure to ozone and sulfuric acid aerosol on the rat lung. Exp Mol Pathol 1981; 35: 108–123.

    Article  PubMed  CAS  Google Scholar 

  54. Schwartz LW, Dungworth DL, Mustafa MG, Tarkington BK, Tyler WS. Pulmonary responses of rats to ambient levels of ozone: effects of 7-day intermittent or continuous exposure. Lab Invest 1976; 34: 565–578.

    PubMed  CAS  Google Scholar 

  55. Ozone: too much in the wrong place [editorial]; published erratum appears in Lancet 1991 Aug 3; 338(8762): 326 comment. Lancet 1991; 338: 221–222.

    Google Scholar 

  56. Chow CK, Plopper CG, Chu M, Dungworth DC. Dietary vitamin E and pulmonary chemical and morphological alterations of rats exposed to 0.1 ppm ozone. Environ Res 1981; 24: 315–324.

    Article  CAS  Google Scholar 

  57. Elsayed NM, Mustafa MG, Mead JF. Increased vitamin E content in the lung after ozone exposure: a possible mobilization in response to oxidative stress. Arch Biochem Biophys 1990; 282: 263–269.

    Article  PubMed  CAS  Google Scholar 

  58. Gunnison AF, Weideman PA, Sobo M, Koening KL, Chen LC. Age-dependence of responses to acute ozone exposure in rats. Fund Appl Toxicol 1992; 18: 360–369.

    Article  CAS  Google Scholar 

  59. Matzen RN. Development of tolerance of ozone in reference to pulmonary edema. Am J Physiol 1957; 190: 84–88.

    PubMed  CAS  Google Scholar 

  60. Environmental Protection Agency. Air quality criteria for ozone and photochemical oxidants. Environ Protection Agency 1978; 600: 8–78.

    Google Scholar 

  61. Frager NB, Phalen RF, Ken oyer JL. Adaptations to ozone in reference to mucociliary clearance. Arch Environ Health 1979; 34: 51–57.

    PubMed  CAS  Google Scholar 

  62. Gardner DE, Lewis TR, Alpert SM, Hurst DJ, Coffin DL. The role of tolerance in pulmonary defense mechanisms. Arch Environ Health 1972; 25: 432–438.

    PubMed  CAS  Google Scholar 

  63. Tepper JS, Costa DL, Lehmann JR, Weber MF, Hatch GE. Unattenuated structural and biochemical alterations in the rat lung during functional adaptation to ozone. Am Rev Respir Dis 1989; 140: 493–501.

    Article  PubMed  CAS  Google Scholar 

  64. Chow CK, Hussain MZ, Cross CE, Dungworth DL, Mustafa MG. Effect of low levels of ozone on rat lungs. I. Biochemical responses during recovery and reexposure. Exp Mol Pathol 1976; 25: 182–188.

    Article  PubMed  CAS  Google Scholar 

  65. Yokoyama E, Ichikawa I, Nambu Z, Kawai K, Kyono Y. Respiratory effects of intermittent exposure to ozone of rats. Environ Res 1984; 33: 271–283.

    Article  PubMed  CAS  Google Scholar 

  66. Nikual KJ, Wilson DW, Giri SN, Plopper CG, Dungworth DL. The response of the rat tracheal epithelium to ozone exposure. Injury, adaptation, and repair. Am J Pathol 1988; 131: 373–384.

    Google Scholar 

  67. Warren DL, Guth DJ, Last LA. Synergistic interaction of ozone and respirable aerosols in rat lungs. Toxicol Appl Pharmacol 1986; 84: 470–479.

    Article  PubMed  CAS  Google Scholar 

  68. Plopper CG, Chow CK, Dungworth DL, Tyler WS. Pulmonary alterations in rats exposed to 0.2 and 0.1 ppm ozone: a correlated morphological and biochemical study. Arch Environ Health 1979; 34: 390–395.

    PubMed  CAS  Google Scholar 

  69. Dubick MA, Heng H, Bucker RB. Effects of protein deficiency and food restriction on lung ascorbic acid and glutathione in rats exposed to ozone. J Nutr 1985; 115: 1050–1056.

    PubMed  CAS  Google Scholar 

  70. Ichinose T, Sagai M. Biochemical effects of combined gases of nitrogen dioxide and ozone. III. Synergistic effects on lipid peroxidation and antioxidative protective systems in the lungs of rats and guinea pigs. Toxicology 1989; 59: 259–270.

    CAS  Google Scholar 

  71. Rahman I, Clerch LB, Massaro D. Rat lung oxidation enzyme induction by ozone. Am J Physiol 1991; 260: L412–L418.

    PubMed  CAS  Google Scholar 

  72. Kennedy CH, Hatch GE, Slade R, Mason RP. Application of the EPR spin–trapping technique to the detection of radicals produced in vivo during inhalation expsoure of rats to ozone. Toxicol Appl Pharmacol 1992; 114: 41–46.

    Article  PubMed  CAS  Google Scholar 

  73. Pryor WA. Free radical reactions in biology: initiation of lipid autooxidation by ozone and nitrogen dioxide. Environ Health Perspect 1976; 16: 180–181.

    Article  Google Scholar 

  74. Murlas CG, Roum JH. Sequence of pathologic changes in the airway mucosa of guinea pigs during ozone-induced bronchial hyperreactivity. Am Rev Respir Dis 1985; 131: 314–320.

    PubMed  CAS  Google Scholar 

  75. Gordon T, Amdur MO. Effect of ozone on respiratory response of guinea pigs to histamine. J Toxicol Environ Health 1980; 6: 185–195.

    Article  PubMed  CAS  Google Scholar 

  76. Campos MG, Segura P, Vargas MH, Vanda B, Ponce-Monter H, Selman M. O 3–induced airway hyperresponsiveness to noncholinergic system and other stimuli. J Appl Physiol 1992; 73: 354–361.

    PubMed  CAS  Google Scholar 

  77. Schultheis AH, Bassett DJ. Inflammatory cell influx into ozone-exposed guinea pig lung interstital and airways spaces. Agents Actions 1991; 34: 270–273.

    Article  PubMed  CAS  Google Scholar 

  78. Tan WC, Bethel RA. The effect of platlet activating factor antagonist on ozone-induced airway inflammation and bronchial hyperresponsiveness in guinea pigs. Am Rev Respir Dis 1992; 146: 916–922.

    PubMed  CAS  Google Scholar 

  79. Murlas C, Roum JH. Bronchial hyperreactivity occurs in steroid-treated guinea pigs depleted of leukocytes by cyclophosphamide. J Appl Physiol 1985; 58: 1630–1637.

    PubMed  CAS  Google Scholar 

  80. Yeadon M, Wilkinson D, Darley-Usmar V, O’Leary VJ, Payne AN. Mechanisms contributing to ozone-induced bronchial hyperreactivity in guinea-pigs. Pulm Pharmacol 1992; 5: 39–50.

    Article  PubMed  CAS  Google Scholar 

  81. Bromberg PA, Ranga V, Stutts MJ. Effects of ozone on airway epithelial permeability and ion transport. Research Report Health Effects Institute 1991; 2: 19–22.

    Google Scholar 

  82. Yokoyama E, Goto H, Kawai K, Kyono H. Mechanical properties of rabbit with edema caused by exposure of ozone. J Environ Pathol Toxicol Oncol 1989; 9: 95–108.

    PubMed  CAS  Google Scholar 

  83. Schlesinger RB. Comparative toxicity of ambient air pollutants: some aspect related to lung defense. Environ Health Perspect 1989; 81: 123–128.

    Article  PubMed  CAS  Google Scholar 

  84. Zelikoff JT, Kraemer GL, Vogel MC, Schlesinger RB. Immunomodulating effects of ozone on macrophage functions important for tumor surveillance and host defense. J Toxicol Environ Health 1991; 34: 449–467.

    Article  PubMed  CAS  Google Scholar 

  85. Goldstein BD, Solomon S, Pasternack BS, Bickers DR. Decrease in rabbit lung microsomal cytochrome P-450 levels following ozone exposure. Res Commun Chem Pathol Pharmacol 1975; 10: 759–762.

    PubMed  CAS  Google Scholar 

  86. Palmer MS, Swanson DH, Coffin DL. Effect of ozone on benzpyrene hydroxylase activity in the Syrian golden hamster. Cancer Res 1971; 31: 730–733.

    PubMed  CAS  Google Scholar 

  87. Suzuki E, Takahashi Y, Aida S, Kimula Y, Ito Y, Miura T. Alteration in surface structure of Clara cells and pulmonary cytochrome P-450b level in rats exposed to ozone. Toxicology 1992; 71: 223–232.

    Article  PubMed  CAS  Google Scholar 

  88. Takahashi Y, Miura T. Responses of cytochrome P-450 isozymes of rat lung to in vivo exposure to ozone. Toxicol Lett 1990; 54: 327–335.

    Article  PubMed  CAS  Google Scholar 

  89. Abraham WM, Delehunt JC, Yerger L, Marchette B, Oliver W, Jr. Changes in airway permeability and responsiveness after exposure of ozone. Environ Res 1984; 34: 110–119.

    Article  PubMed  CAS  Google Scholar 

  90. Allegra L, Moavero NE, Rampoldi C. Ozone-induced impairment of mucociliary transport and its prevention with N-acetylcysteine. Am J Med 1991; 91: 67S–71S.

    Article  PubMed  CAS  Google Scholar 

  91. Schelegle ES, Gunther RA, Parsons GH, Colbert SR, Yousef MA, Cross CE. Acute ozone exposure increases bronchial blood flow in conscious sheep. Respir Physiol 1990; 82: 325–335.

    Article  PubMed  CAS  Google Scholar 

  92. Menzel DB. The role of free radicals in the toxicity of air pollutants (nitrogen oxides and ozone). In: Pryor WA, ed. Free radicals in biology. New York: Academic Press, 1976: 181–202.

    Google Scholar 

  93. Hyde DM, Hubbard WC, Wong V, Wu R, Pinkerton K, Plopper CG. Ozone-induced acute tracheobronchial epithelial injury: relationship to granulocyte emigration in the lung. Am J Respir Cell Mol Biol 1992; 6: 481–497.

    PubMed  CAS  Google Scholar 

  94. Castleman WL, Dungworth DL, Schwartz LW, Tyler WS. Acute resiratory bronchiolitis: an ultrastructural and autoradiographic study of epithelial cell injury and renewal in rhesus monkeys exposed to ozone. Am J Pathol 1980; 98: 811–840.

    PubMed  CAS  Google Scholar 

  95. Stevens WHM, Ädelroth E, Wattie J, Woolley MJ, Ellis R, Dahlback M, et al. The effect of inhaled budesonide on ozone-induced airway hyperresponsiveness and bronchoalveolar lavage cells in dogs. J Appl Physiol 1994; 77: 2578–2583.

    PubMed  CAS  Google Scholar 

  96. Kariya ST, Shore SA, Skornik WA, Anderson K, Ingram RH, Jr., Drazen JM. Methacholine-induced bronchoconstriction in dogs: effects of lung volume and O3 exposure. J Appl Physiol 1988; 65: 2679–2686.

    PubMed  CAS  Google Scholar 

  97. Beckett WS, Freed AN, Turner C, Menkes HA. Prolonged increased responsiveness of canine peripheral airways after exposure to O3. J Appl Physiol 1988; 64: 605–610.

    PubMed  CAS  Google Scholar 

  98. Fabbri LM, Aizawa HA, Alpert SE, Walters ER, O’Byrne PM, Gold BD, et al. Airway hyperresponsiveness and changes in cell counts in bronchoalveolar lavage after ozone exposure in dogs. Am Rev Respir Dis 1984; 129: 288–291.

    PubMed  CAS  Google Scholar 

  99. Holtzman MJ, Fabbri LM, O’Byrne PM, Gold BD, Aizawa H, Walters EH, et al. Importance of airway inflammation for hyperresponsiveness induced by ozone. Am Rev Respir Dis 1983; 127: 686–690.

    PubMed  CAS  Google Scholar 

  100. O’Byrne PM, Walters EH, Gold BD, Aizawa HA, Fabbri LM, Alpert SE, et al. Neutrophil depletion inhibits airway hyperresponsiveness induced by ozone exposure. Am Rev Respir Dis 1984; 130: 214–219.

    PubMed  Google Scholar 

  101. Imai T, Adachi M, Idaira K, Hiyama T, Suganuma T, Takahashi T, et al. The role of neutrophils in airway hyperrespsonsiveness in dogs after ozone exposure. Arerugi 1990; 39: 90–98.

    PubMed  CAS  Google Scholar 

  102. Li Z, Daniel EE, Lane CG, Arnaout MA, O’Byrne PM. Effect of an anti-Mo 1 MAb on ozone-induced airway inflammation and airway hyperresponsiveness in dogs. Am J Physiol 1992; 263: L723–L726.

    PubMed  CAS  Google Scholar 

  103. Imai T, Adachi M, Idaira K, et al. Role of thromboxane A2 and prostaglandin I2 in the increase of airway responsiveness in dogs after ozone exposure. Arerugi 1992; 41: 595–600.

    PubMed  CAS  Google Scholar 

  104. Fouke JM, Wolin AD, McFadden ER, Jr. Effects of ozone on lung mechanics and cyclooxygenase metabolites in dogs. Prostaglandins 1991; 42: 343–353.

    Article  PubMed  CAS  Google Scholar 

  105. Beckett WS, McDonnell WF, Horstman DH, House DE. Role of the parasympathetic nervous system in acute lung response to ozone. J Appl Physiol 1985; 59: 1879–1885.

    PubMed  CAS  Google Scholar 

  106. Gong H, Jr., Bedi JF, Horvath SM. Inhaled albuterol does not protect against ozone toxicity in nonasthmatic athletes. Arch Environ Health 1988; 43: 46–53.

    Article  PubMed  CAS  Google Scholar 

  107. Fabri LM, Aizawa HA, O’Byrne PM, Bethel RA, Walters EH, Holtzman MJ. An anti-inflammatory drug (BW755C) inhibits airway hyperresponsiveness induced by ozone in dogs. J Allergy Clin Immunol 1985; 76: 162–166.

    Article  Google Scholar 

  108. Lee MK, Murlas C. Ozone-induced bronchial hyperreactivity in guinea pigs is abolished by BW755C or FPL55712 but not by indomethacin. Am Rev Respir Dis 4985; 132: 1005–1009.

    Google Scholar 

  109. Graham DE, Koren HS. Biomarkers of inflammation in ozone-exposed humans. Comparison of the nasal and bronchoalveolar lavage. Am Rev Respir Dis 1990; 142: 152–156.

    PubMed  CAS  Google Scholar 

  110. Schelegle ES, Adams WC, Siefkin AD. Indomethacin pretreatment reduces ozone-induced pulmonary function decrements in human subjects. Am Rev Respir Dis 1987; 136: 1350–1354.

    Article  PubMed  CAS  Google Scholar 

  111. Ying RL, Gross KB, Terzo TS, Eschenbacher WL. Indomethacin does not inhibit the ozone-induced increase in bronchial responsiveness in human subjects. Am Rev Respir Dis 1990; 142: 817–821.

    PubMed  CAS  Google Scholar 

  112. O’Byrne PM, Walters EH, Aizawa HA, Fabbri LM, Holtzman MJ, Nadel JA. Indomethacin inhibits the airway hyperresponsiveness but not the neutrophil influx induced by ozone in dogs. Am Rev Respir Dis 1984; 130: 220–224.

    PubMed  Google Scholar 

  113. Kleeberger SR, Hudak BB. Acute ozone-induced change in airway permeability: role of infiltrating leukocytes. J Appl Physiol 1992; 72: 670–676.

    PubMed  CAS  Google Scholar 

  114. Kleeberger SR, Hudak BB. Acute ozone-induced change in airway permeability: role of infiltrating leukocytes. J Appl Physiol 1992; 72: 670–676.

    PubMed  CAS  Google Scholar 

  115. Aizawa HA, Chung KF, Leikauf GD, Ueki I, Bethel RA, O’Byrne PM, et al. Significance of thromboxane generation in ozone-induced airway hyperresponsiveness in dogs. J Appl Physiol 1985; 59: 1918–1923.

    PubMed  CAS  Google Scholar 

  116. Nambu F, Imai T, Adachi M, Takahashi T. Effect of OKY-046 on airway hyperresponsiveness induced by ozone in dogs. Nippon Yakurigaku Zasshi 1990; 95: 271–277.

    Article  PubMed  CAS  Google Scholar 

  117. Idaira K, Imai T, Sugeta A, Hiyama T, Suganuma T, Adachi M, et al. Inhibitory effects of S-1452, a specific thromboxane A2 receptor antagonist, on the increase of airway responsiveness in dogs after ozone exposure. Arerugi 1992; 41: 111–118.

    PubMed  CAS  Google Scholar 

  118. Imai T, Adachi M, Idaira K, Suganuma T, Takahashi T, Yamaguchi H, et al. The effect of a specific thromboxane A2 antagonist, AA-2414, on airway hyperresponsiveness induced by ozone exposure in dogs. Arerugi 1991; 40: 28–36.

    PubMed  CAS  Google Scholar 

  119. Jones GL, Lane CG, O’Byrne PM. Effect of thromboxane antagonists on ozone-induced airway responses in dogs. J Appl Physiol 1990; 69: 880–884.

    PubMed  CAS  Google Scholar 

  120. Okazawa A, Kobayashi H, Adachi M, Takahashi T, Misawa M. The effect of leukotriene C4/D4 receptor antagonist (ONO-1078) and thromboxane A2 synthetase inhibitor (OKY-046) on airway hyperresponsiveness induced by ozone exposure in guinea pigs. Nippon Kyobu Shikkan Gakkai Zasshi 1990; 28: 293–299.

    PubMed  CAS  Google Scholar 

  121. Janssen LJ, O’Byrne PM, Daniel EE. Mechanism underlying ozone-induced in vitro hyperresponsiveness in canine bronchi. Am J Physiol 1991; 261: L55–L62.

    PubMed  CAS  Google Scholar 

  122. Asano M, Imai T, Inoue H, Masunaga T, Inamura N, Yatabe T, et al. A 5-lipoxygenase inhibitor, FR110302, inhibits ozone-induced airway hyperresponsiveness in guinea pigs and dogs. Agents Actions 1993; 38: 171–177.

    Article  PubMed  CAS  Google Scholar 

  123. Imai T, Adachi M, Idaira K, Konno S, Takahashi T, Yamaguchi H, et al. The effect of a selective 5-lipoxygenase inhibitor, AA-861 on airway hyperresponsiveness induced by ozone exposure in dogs. Arerugi 1989; 38: 532–541.

    PubMed  CAS  Google Scholar 

  124. Johnson HG, Stout BK, Ruppel PL. Inhibition of the 5-lipoxygenase pathway with piriprost (U–60, 257) protects normal primates from ozone-induced methachline hyperresponsive small airways. Prostaglandins 1988; 35: 459–466.

    Article  PubMed  CAS  Google Scholar 

  125. Stevens WHM, Lane CG, Woolley MJ, Ellis R, Tagari P, Black C, et al. Effect of FLAP antagonsit MK-0591 on leukotriene production and ozone-induced airway responses in dogs. J Appl Physiol 1994; 76: 1583–1588.

    PubMed  CAS  Google Scholar 

  126. Stevens WH, Lane CG, Woolley MJ, Grabec P, O’Byrne PM. The effects of a 5-lipoxygenase inhibitor, Zileuton, on ozone-induced airway hyperresponsiveness in dogs. J Allergy Clin Immunol 1993; 91: 161.

    Google Scholar 

  127. Stevens WHM, VanderHeyden CP, Wattie J, Lane CG, Smith WG, O’Byrne PM. Effect of leukotriene B4 receptor antagonist SC-53228 on ozone-induced airway hyperresponsiveness and inflammation in dogs. Am J Respir Resp Crit Care Med 1995; 152: 1443–1448.

    CAS  Google Scholar 

  128. Chitano P, Di Stefano A, Finotto S, Zavattini G, Maestrelli P, Mapp C, et al. Ambroxol inhibits airway hyperresponsiveness induced by ozone in dogs. Respiration 1989; 55 Suppl 1: 74–78.

    Article  PubMed  Google Scholar 

  129. Matsui S, Jones GL, Woolley M J, Lane CG, Gontovnick LS, O’Byrne PM. The effect of antioxidants on ozone-induced airway hyperresponsiveness in dogs. Am Rev Respir Dis 1991; 144: 1287–1290.

    CAS  Google Scholar 

  130. Takahashi T, Miura M, Katsumata U, Iohinose M, Kimura K, Inoue H, et al. Involvement of superoxide in ozone-induced airway hyperresponsiveness in anesthetized cats Am Rev Respir Dis 1993; 148: 103–106.

    CAS  Google Scholar 

  131. Stevens WHM, Conlon PD, O’Byrne PM. Ozone-induced oxygen radical release from bronchoalveolar lavage cells and airway hyperresponsiveness in dogs. J Physiol 1995; 486: 257–265.

    PubMed  CAS  Google Scholar 

  132. Stevens WHM, Inman MD, Wattie J, O’Byrne PM. Allergen-induced oxygen radial release from bronchoalveolar lavage cells and airway hyperresponsiveness in dogs. Am J Respir Crit Care Med 1995; 151: 1526–1531.

    PubMed  CAS  Google Scholar 

  133. Stevens WHM, Ädelroth E, Woolley MJ, Wattie J, Dahlbäck M, O’Byrne PM. The effects of an inhaled corticosteroid, budesonide, on oxygen radical production by bronchoalveolar cells after allergen or ozone inhalation in dogs. Eur J Pharmacol 1995; 293: 251–257.

    Article  PubMed  CAS  Google Scholar 

  134. Murlas CG, Lang Z, Chodimella V. Dexamethasone reduces tachykinin but not ACh airway hyperreactivity after 03. Lung 1993; 171: 109–121.

    Article  PubMed  CAS  Google Scholar 

  135. Osebold JW, Gershwin LJ, Zee YC. Studies on the enhancement of allergic lung sensitization by inhalation of ozone and sulfuric acid aerosol. J Environ Pathol Toxicol Oncol 1980; 3: 221–234.

    CAS  Google Scholar 

  136. Molfino NA, Wright SC, Katz I, Tarlo S, Silverman F, McClean PA, et al. Effect of low concentrations of ozone on inhaled allergen response in asthmatic subjects see comments. Lancet 1991; 338: 199–203.

    Article  PubMed  CAS  Google Scholar 

  137. Matsumura Y. The effects of ozone, nitorgen dioxide, and sulfur dioxide on the experimentally induced allergic respiratory disorder in guinea pigs. Am Rev Respir Dis 1970; 102: 430–437.

    PubMed  CAS  Google Scholar 

  138. Matsumura Y. The effects of ozone, nitrogen dioxide, and sulfur dioxide on the experimentally induced allergic respiratory disorder in guinea pigs. Am Rev Respir Dis 1970; 102: 438–443.

    PubMed  CAS  Google Scholar 

  139. Yanai M, Ohrui T, Aikawa T, Okayama H, Sekizawa K, Maeyama K, et al. Ozone increases susceptibility to antigen inhalation in allergic dogs. J Appl Phyisol 1990; 68: 2267–2273.

    CAS  Google Scholar 

  140. Turner CR, Kleeberger SR, Spannhake EW. Preexposure to ozone blocks the antigen-induced late asthmatic response of the canine peripheral airways. J Toxicol Environ Health 1989; 28: 363–371.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Stevens, W.H.M., O’Byrne, P.M. (1996). Ozone-Induced Bronchial Hyperreactivity. In: Raeburn, D., Giembycz, M.A. (eds) Airways Smooth Muscle: Modelling the Asthmatic Response In Vivo . Respiratory Pharmacology and Pharmacotherapy. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9000-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9000-7_5

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9863-8

  • Online ISBN: 978-3-0348-9000-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics