Skip to main content

Response to ischemia and reperfusion by the diabetic heart

  • Chapter
Myocardial Ischemia: Mechanisms, Reperfusion, Protection

Part of the book series: EXS ((EXS,volume 76))

Abstract

Diabetes results in a number of diverse metabolic alterations among which is an elevation in circulating free fatty acids and a resulting increased reliance of the heart on fatty acids as an energy substrate [1]. In addition, one of the most notable changes at the myocardial level is decreased glucose transport into cells [2]. Membrane transport of ions may also be affected [3–6]. Decreased glucose uptake is directly related to a reduction in the content of glucose transporter proteins [2]. Other effects may result indirectly from altered cellular metabolism and from cellular and subcellular membrane changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Randle RJ, Garland PB, Hales CN, Newsholme E, Denton RM, Pogson CI. I. Protein Hormones. Interactions of metabolism and the physiological role of insulin. Recent Prog Horm Res 1966; 22: 1–48.

    PubMed  CAS  Google Scholar 

  2. Garvey WT, Hardin D, Juhaszova M, Domínguez JH. Effects of diabetes on myocardial glucose transport system in rats: implications for diabetic cardiomyopathy. Am J Physiol 1993; 264: H837–H844.

    PubMed  CAS  Google Scholar 

  3. Lagadic-Gossmann D, Chesnais JM, Feuvray D. Intracellular pH regulation in papillary muscle cells from streptozotocin-diabetic rats: an ion-sensitive microelectrode study. Pflügers Arch 1988; 412: 613–617.

    Article  PubMed  CAS  Google Scholar 

  4. Pierce GN, Ramjiawan B, Dhalla NS, Ferrari R. Na+-H+ exchange in cardiac sarcolemmal vesicles isolated from diabetic rats. Am J Physiol 1990; 290: H255–H261.

    Google Scholar 

  5. Jourdon P, Feuvray D. Calcium and potassium currents in ventricular myocytes isolated from diabetic rats. J Physiol (Lond) 1993; 470: 411–429.

    CAS  Google Scholar 

  6. Ku DD, Sellers BM. Effects of streptozotocin diabetes and insulin treatment on myocardial sodium pump and contractility of the rat heart. J Pharmacol Exp Ther 1982; 222: 395–400.

    PubMed  CAS  Google Scholar 

  7. Feuvray D, Idell-Wenger JA, Neely JR. Effects of ischemia on rat myocardial function and metabolism in diabetes. Circ Res 1979; 44: 322–329.

    PubMed  CAS  Google Scholar 

  8. Wall SR, Lopaschuk GD. Glucose oxidation rates in fatty acid-perfused isolated working hearts from diabetic rats. Biochim Biophys Acta 1989; 1006: 97–103.

    PubMed  CAS  Google Scholar 

  9. Avogaro A, Nosadini R, Doria A, Fioretto P, Velussi M, Vigorito C, et al. Myocardium metabolism in insulin-deficient diabetic humans without coronary artery disease. Am J Physiol 1990; 258: E606–E618.

    PubMed  CAS  Google Scholar 

  10. Makino M, Nakanishi H, Yosida S, Matsui H, Yanaga T. Alteration of heart membrane Ca2+ transport in streptozotocin-induced diabetic cardiomyopathy. In: Nagano M, Dhalla NS, editors: The Diabetic Heart. New York: Raven, 1991: 219–228.

    Google Scholar 

  11. Kim D, Smith TW. Cellular mechanisms underlying calcium-proton interactions in cultured chick ventricular cells. J Physiol (Lond) 1988; 398: 391–410.

    CAS  Google Scholar 

  12. Neely JR, Liedtke AJ, Whitmer JT, Rovetto MS. Relationship between coronary flow and adenosine triphosphate production from glycolysis and oxidative metabolism. In: Recent advances in studies on cardiac structure and metabolism 1975; 8: 301–321.

    Google Scholar 

  13. Knabb MT, Saffitz JE, Corr PB, Sobel BE. The dependence of electrophysiological derangements on accumulation of endogenous long-chain acyl carnitine in hypoxic neonatal rat myocytes. Circ Res 1986; 58: 230–240.

    PubMed  CAS  Google Scholar 

  14. Lopaschuk GD, Katz S, McNeill JH. The effect of alloxan- and streptozotocin-induced diabetes on calcium transport in rat cardiac sarcoplasmic reticulum. The possible involvement of long chain acyl carnitines. Can J Physiol Pharmacol 1983; 61: 439–448.

    Article  PubMed  CAS  Google Scholar 

  15. Tahiliani AG, McNeill JH. Diabetes-induced abnormalities in the myocardium. Life Sci 1986; 38: 959–974.

    Article  PubMed  CAS  Google Scholar 

  16. Lopaschuk GD. Alterations in myocardial fatty acid metabolism contribute to ischemic injury in the diabetic. Can J Cardiol 1989; 5: 315–320.

    PubMed  CAS  Google Scholar 

  17. Nicholl TA, Lopaschuk GD, McNeill JH. Effects of free fatty acids and dichloroacetate on isolated working diabetic rat heart. Am J Physiol 1991; 261: H1053–H1059.

    PubMed  CAS  Google Scholar 

  18. Hekimian G, Feuvray D. Reduction of ischemia-induced acyl carnitine accumulation by TDGA and its influence on lactate dehydrogenase release in diabetic rat hearts. Diabetes 1986; 35: 906–910.

    Article  PubMed  CAS  Google Scholar 

  19. Lopaschuk GD, Spafford M. Response of isolated working hearts to fatty acids and carnitine palmitoyl transferase I inhibition during reduction of coronary flow in acutely and chronically diabetic rats. Circ Res, 1989; 65: 378–387.

    PubMed  CAS  Google Scholar 

  20. Kerbey AL, Vary TC, Randle PJ. Molecular mechanisms regulating glucose oxidation. Basic Res Cardiol 1985; 80 (2): 93–96.

    PubMed  CAS  Google Scholar 

  21. Broderick TL, Quinney HA, Lopaschuk GD. Carnitine stimulation of glucose oxidation in the fatty acid perfused isolated working heart. J Biol Chem 1992; 267: 3758–3763.

    PubMed  CAS  Google Scholar 

  22. Lysiak W, Lilly K, Di Lisa F, Toth PP, Bieber LL. Quantitation of the effect of L-carnitine on the levels of acid-soluble short-chain acyl-CoA and CoASH in rat heart and liver mitochondria. J Biol Chem 1988; 263: 1151–1156.

    PubMed  CAS  Google Scholar 

  23. Uziel G, Garavaglia B, Di Donato S. Carnitine stimulation of pyruvate dehydrogenase complex (PDHC) in isolated human skeletal muscle mitochondria. Muscle Nerve 1988; 11: 720–724.

    Article  PubMed  CAS  Google Scholar 

  24. Broderick TL, Quinney HA, Lopaschuk GD. L-carnitine increases glucose metabolism and mechanical function following ischaemia in diabetic rat heart. Cardiovasc Res 1995; 29: 373–378.

    PubMed  CAS  Google Scholar 

  25. Lopaschuk GD, Tsang H. Metabolism of palmitate in isolated working hearts from spontaneously diabetic “BB” Wistar rats. Circ Res 1987; 61: 853–858.

    PubMed  CAS  Google Scholar 

  26. Tani M, Neely JR. Hearts from diabetic rats are more resistant to in vitro ischemia: possible role of altered Ca2+ metabolism. Circ Res 1988; 62: 931–940.

    PubMed  CAS  Google Scholar 

  27. Fliegel L, Fröhlich O. The Na+/H+ exchanger: an update on structure, regulation and cardiac physiology. Biochem J 1993; 296: 273–285.

    PubMed  CAS  Google Scholar 

  28. Lagadic-Gossmann D, Buckler KJ, Vaughan-Jones RD. Role of bicarbonate in pH recovery from intracellular acidosis in the guinea-pig ventricular myocyte. J Physiol 1992; 458: 361–384.

    PubMed  CAS  Google Scholar 

  29. Lagadic-Gossmann D, Feuvray D. Intracellular sodium activity in papillary muscle from diabetic rat hearts. Exp Physiol 1991; 76: 147–149.

    PubMed  CAS  Google Scholar 

  30. Khandoudi N, Bernard M, Cozzone P, Feuvray D. Intracellular pH and role of Na+/H+ exchange during ischaemia and reperfusion of normal and diabetic rat hearts. Cardiovasc Res 1990; 24: 873–878.

    Article  PubMed  CAS  Google Scholar 

  31. Rändle PJ, Newsholme EA, Garland PB. Regulation of glucose uptake by muscle. Effects of fatty acid, ketone bodies and pyruvate, and of alloxan diabetes and starvation on the uptake and metabolite fate of glucose in rat heart and diaphragm muscle. Biochem J 1964; 93: 652–665.

    PubMed  Google Scholar 

  32. Tani M, Neely JR. Role of intracellular Na+ in Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts. Circ Res 1989; 65: 1045–1056.

    PubMed  CAS  Google Scholar 

  33. Meng H-P, Pierce GN. Protective effects of 5-(N,N-dimethyl) amiloride on ischemia-reperfusion injury in hearts. Am J Physiol 1990; 258: H1615–H1619.

    PubMed  CAS  Google Scholar 

  34. Kusama Y, Hearse DJ, Avkiran M. Diabetes and susceptibility to reperfusion-induced ventricular arrhythmias. J Mol Cell Cardiol 1992; 24: 411–421.

    Article  PubMed  CAS  Google Scholar 

  35. Khandoudi N, Bernard M, Cozzone P, Feuvray D. Mechanisms of intracellular pH regulation during postischemic reperfusion of diabetic rat hearts. Diabetes 1995; 44: 196–202.

    Article  PubMed  CAS  Google Scholar 

  36. Vandenberg JI, Metcalfe JC, Grace AA. Mechanisms of pH¡ recovery after global ischemia in the perfused heart. Circ Res 1993; 72: 993–1003.

    PubMed  CAS  Google Scholar 

  37. Poole RC, Halestrap AP, Price SJ, Levi AJ. The kinetics of transport of lactate and pyruvate into isolated cardiac myocytes from guinea pig. Biochem J 1989; 264: 409–418.

    PubMed  CAS  Google Scholar 

  38. Lagadic-Gossmann D, Buckler KJ, Le Prigent K, Feuvray D. Altered Ca2+ handling in ventricular myocytes isolated from diabetic rats. Am J Physiol. In press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Berkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Feuvray, D. (1996). Response to ischemia and reperfusion by the diabetic heart. In: Karmazyn, M. (eds) Myocardial Ischemia: Mechanisms, Reperfusion, Protection. EXS, vol 76. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8988-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8988-9_24

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9857-7

  • Online ISBN: 978-3-0348-8988-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics