Skip to main content

Part of the book series: EXS ((EXS,volume 76))

Abstract

The vast majority of cardiac surgical procedures are carried out using aortic cross-clamping and cardioplegie arrest [1]. Although alternate approaches such as operating on the normothermic empty beating heart, intermittent aortic cross-clamping or hypothermic ventricular fibrillation can be successfully utilized, the ability to carry out a meticulous and complete surgical procedure is generally best accomplished with the heart bloodless and still. Protective strategies in cardiac surgery are directed at both minimizing and reversing myocardial injury, which may occur not only secondary to ischemia induced with aortic cross-clamping, but also at the time of reperfusion. The ability to protect and resuscitate the heart from ischemic/reperfusion injury is of particular importance in patients with severe or complex disease, acute ischemia and/or compromised ventricular function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Robinson LA, Schwartz GD, Goddard DB, Fleming WH, Galbraith TA. Myocardial protection for acquired heart disease surgery: Results of a national survey. Ann Thorac Surg 1995; 59: 361–372.

    Article  PubMed  CAS  Google Scholar 

  2. Silverman NA, Levitsky S. Intraoperative myocardial protection in the context of coronary revascularizaton. Progress in Cardiovascular Diseases 1987; 29: 413 - 428.

    Article  PubMed  CAS  Google Scholar 

  3. Buckberg GD. Strategies and logic of cardioplegie delivery to prevent, avoid and reverse ischemic and reperfusion damage. J Thorac Cardiovasc Surg 1987; 93: 127–139.

    PubMed  CAS  Google Scholar 

  4. Chitwood WR. Retrograde cardioplegia: Current methods. Ann Thorac Surg 1992; 53: 352–355.

    Article  PubMed  Google Scholar 

  5. Noyez L, van Son JAM, van der Werf T, Knape JTA, Gimbrere J, van Asten WNJC et al. Retrograde versus antegrade delivery of cardioplegie solution in myocardial revascularization. J Thorac Cardiovasc Surg 1993; 105: 854–863.

    PubMed  CAS  Google Scholar 

  6. Menasche P, Subayi J-B, Piwnica A. Retrograde coronary sinus cardioplegia for aortic valve operations: A clinical report on 500 patients. Ann Thorac Surg 1990; 49: 556–564.

    Article  PubMed  CAS  Google Scholar 

  7. Gundry SR, Razzouk AJ, Vigesaa RE, Wang N, Bailey LL. Optimal delivery of cardioplegie solution for “redo” operations. J Thorac Cardiovasc Surg 1992; 103: 896–901.

    PubMed  CAS  Google Scholar 

  8. Barner HB. Blood cardioplegia. A review and comparison with crystalloid cardioplegia. Ann Thorac Surg 1991; 52: 1354–1367.

    Article  PubMed  CAS  Google Scholar 

  9. Julia PL, Partington MT, Buckberg GD, Acar C, Sherman MP, Kofsky ER et al. Superiority of blood cardioplegia over crystalloid cardioplegia in limiting reperfusion damage: Importance of endogenous oxygen free radical scavengers in red blood cells. Surg Forum 1988; 39: 221–223.

    Google Scholar 

  10. Rosenkranz ER, Vinten-Johansen J, Buckberg GD, Okamoto F, Edwards H, Bugyi H. Benefits of normothermic induction of blood cardioplegia in energy-depleted hearts, with maintenance of arrest by multidose cold blood cardioplegie infusions. J Thorac Cardiovasc Surg 1982; 84: 667–677.

    PubMed  CAS  Google Scholar 

  11. Rosenkranz ER, Buckberg GD, Laks H, Mulder DG. Warm induction of cardioplegia with glutamate-enriched blood in coronary patients with cardiogenic shock who are dependent on inotropic drugs and intra-aortic balloon support. J Thorac Cardiovasc Surg 1983; 86: 507–518.

    PubMed  CAS  Google Scholar 

  12. Hanafy HM, Allen BS, Winkelmann JW, Ham J, Osimani D, Hartz RS. Warm blood cardioplegie induction: An underused modality. Ann Thorac Surg 1994; 58: 1589–1594.

    Article  PubMed  CAS  Google Scholar 

  13. Braunwald E, Kloner RA. The stunned myocardium: Prolonged postischemic ventricular dysfunction. Circulation 1982; 66: 1146–1149.

    Article  PubMed  CAS  Google Scholar 

  14. Reimer KA, Jennings RB. The “wavefront phenomenon” of myocardial ischemic cell death. Lab Invest 1979; 40: 633–644.

    PubMed  CAS  Google Scholar 

  15. Allen BS, Okamoto F, Buckberg GD, Bugyi H, Young H, Leaf J et al. Studies of controlled reperfusion after ischemia. Immediate functional recovery after six hours of regional ischemia by careful control of conditions of reperfusion and composition of reperfusate. J Thorac Cardiovasc Surg 1986; 92: 621–635.

    PubMed  CAS  Google Scholar 

  16. Reed MK, Barak C, Malloy CR, Maniscalco SP, Jessen ME. Cardioplegia with glutamate and aspartate: Effect on TCA cycle metabolism. Surg Forum 1994; 45: 227–230.

    Google Scholar 

  17. Rosenkranz ER, Okamoto F, Buckberg GD, Robertson JM, Vintén-Johansen J, Bugyi HI. Safety of prolonged aortic clamping with blood cardioplegia. Ill Aspartate enrichment of glutamate-blood cardioplegia in energy-depleted hearts after ischemic and reperfusion injury. J Thorac Cardiovasc Surg 1986; 91: 428–435.

    PubMed  CAS  Google Scholar 

  18. Teoh KH, Christakis GT, Weisel RD, Fremes SE, Mickle DAG, Romaschin AD et al. Accelerated myocardial metabolic recovery with terminal warm blood cardioplegia. J Thorac Cardiovasc Surg 1986; 91: 888–895.

    PubMed  CAS  Google Scholar 

  19. Allen BS, Buckberg GD, Fontan FM, Kirsh MM, Popoff G, Beyersdorf F et al. Superiority of controlled surgical reperfusion versus percutaneous transluminal coronary angioplasty in acute coronary occlusion. J Thorac Cardiovasc Surg 1993; 105: 864–884.

    PubMed  CAS  Google Scholar 

  20. Lichtenstein SV, Ashe KA, El Dalati H, Cusimano RJ, Panos A, Slutsky AS. Warm heart surgery. J Thorac Cardiovasc Surg 1991; 101: 269–274.

    PubMed  CAS  Google Scholar 

  21. Lichtenstein SV, Abel JG, Salerno TA. Warm heart surgery and results of operation for recent myocardial infarction. Ann Thorac Surg 1991; 52: 455 - 460.

    Article  PubMed  CAS  Google Scholar 

  22. Salerno TA, Houck JP, Barrozo CAM, Panos A, Christakis GT, Abel JG et al. Retrograde continuous warm blood cardioplegia: A new concept in myocardial protection. Ann Thorac Surg 1991; 51: 245–247.

    Article  PubMed  CAS  Google Scholar 

  23. Yau TM, Ikonomidis JS, Weisel RD, Mickle DAG, Ivanov J, Mohabeer MK et al. Ventricular function after normothermic versus hypothermic cardioplegia. J Thorac Cardiovasc Surg 1993; 105: 833–844.

    PubMed  CAS  Google Scholar 

  24. The Warm Heart Investigators: Randomised trial of normothermic versus hypothermic coronary bypass surgery. Lancet 1994; 343: 559–563.

    Article  Google Scholar 

  25. Martin TD, Craver JM, Gott JP, Weintraub WS, Ramsay J, Mora CT et al. Prospective, randomized trial of retrograde warm blood cardioplegia: Myocardial benefit and neurologic threat. Ann Thorac Surg 1994; 57: 298–304.

    Article  PubMed  CAS  Google Scholar 

  26. Pelletier LC, Carrier M, Ledere Y, Cartier R, Wesolowska E, Solymoss BC. Intermittent antegrade warm versus cold blood cardioplegia: A prospective, randomized study. Ann Thorac Surg 1994; 58: 41–49.

    Article  PubMed  CAS  Google Scholar 

  27. Lichtenstein SV, Naylor CD, Feindel CM, Sykora K, Abel JG, Slutsky AS et al. Intermittent warm blood cardioplegia. Circulation. 1995; 92 [suppl II]: 341–346.

    Google Scholar 

  28. Matsuura H, Lazar HL, Yang XM, Rivers S, Treanor PR, Shemin RJ. Detrimental effects of interrupting warm blood cardioplegia during coronary revascularization. J Thorac Cardiovasc Surg 1993; 106: 357–361.

    PubMed  CAS  Google Scholar 

  29. McLean RF, Wong Bí, Naylor CD, Snow WG, Harrington EM, Gawel M et al. Cardiopulmonary bypass, temperature, and central nervous system dysfunction. Circulation 1994; 90 [part 2]: 250–255.

    Google Scholar 

  30. Hayashida N, Ikonomidis JS, Weisel RD, Shirai T, Ivanov J, Carson SM et al. The optimal cardioplegie temperature. Ann Thorac Surg 1994; 58: 961–971.

    Article  PubMed  CAS  Google Scholar 

  31. Ely SW, Berne RM. Protective effects of adenosine in myocardial ischemia. Circulation 1992; 8: 893–904.

    Google Scholar 

  32. Galinanes M, Chambers DJ, Hearse DJ. Should adenosine continue to be ignored as a cardioprotective agent in cardiac operations? J Thorac Cardiovasc Surg Letter 1993; 105: 180–183.

    CAS  Google Scholar 

  33. Vinten-Johansen J, Nakanishi K, Zhaq ZQ, McGee DS, Tan P. Acadesine improves surgical myocardial protection with blood cardioplegia in ischemically injured canine hearts. Circulation 1993; 88 [2]: 350–358.

    CAS  Google Scholar 

  34. Schubert T, Vetter H, Owen P, Reichart B, Opie LH. Adenosine Cardioplegia: Adenosine versus potassium cardioplegia: Effects on cardiac arrest and postischemic recovery in the isolated rat heart. J Thorac Cardiovasc Surg 1989; 98: 1057–1065.

    PubMed  CAS  Google Scholar 

  35. Bolling SF, Bies LE, Bove EL, Gallagher KP. Augmenting intracellular adenosine improves myocardial recovery. J Thorac Cardiovasc Surg 1990; 99: 469–474.

    PubMed  CAS  Google Scholar 

  36. Hudspeth DA, Nakanishi K, Vinten-Johansen J, Zhao ZQ, McGee DS, Williams MW et al. Adenosine in blood cardioplegia prevents postischemic dysfunction in ischemically injured hearts. Ann Thorac Surg 1994; 58: 1637–1644.

    Article  PubMed  CAS  Google Scholar 

  37. Lasley RD, Mentzer RM Jr. The role of adenosine in extended myocardial preservation with the University of Wisconsin solution. J Thorac Cardiovasc Surg 1994; 107: 1356–1363.

    PubMed  CAS  Google Scholar 

  38. Massuda M, Chang-Chun C, Mollhoff T, Van Belle H, Flameng W. Effects of nucleoside transport inhibition on long-term ex vivo preservation of canine hearts. J Thorac Cardiovasc Surg 1992; 104: 1610–1617.

    Google Scholar 

  39. Abd-Elfattah AS, Jessen ME, Wechsler AS. Nucleoside trapping during reperfusion prevents ventricular dysfunction, “stunning”, in the absence of adenosine: Possible separation between ischemic and reperfusion injury. J Thorac Cardiovasc Surg 1994; 108: 269–278.

    PubMed  CAS  Google Scholar 

  40. Mullane, K. Acadesine: the prototype adenosine regulating agent for reducing myocardial ischemic injury. Cardiovasc Res 1993; 27: 43–47.

    Article  PubMed  CAS  Google Scholar 

  41. Boiling SF, Groh MA, Mattson AM, Grinage RA, Russell AG, Gallagher KP. Acadesine (AICA-riboside) improves postischemic cardiac recovery. Ann Thorac Surg 1992; 54: 93–98.

    Article  Google Scholar 

  42. Galinanes M, Bullough D, Mullane KM, Hearse DJ. Sustained protection by acadesine against ischemia- and reperfusion-induced injury: Studies in the transplanted rat heart. Circulation 1992; 86: 589–597.

    PubMed  CAS  Google Scholar 

  43. Leung JM, Stanley S, Mathew J, Curling P, Barash P, Salmenpera M et al. An initial multicenter, randomized controlled trial on the safety and efficacy of acadesine in patients undergoing coronary artery bypass graft surgery. Anesth Analg 1994; 78: 420–434.

    Article  PubMed  CAS  Google Scholar 

  44. Johnson WD, Kayser KL, Brenowitz JB, Saedi SF. A randomized controlled trial of allopurinol in coronary bypass surgery. Am Heart J 1991; 121: 20–24.

    Article  PubMed  CAS  Google Scholar 

  45. Yau TM, Weisel RD, Mickle DAG, Burton GW, Ingold KU, Ivanov J et al. Vitamin E for coronary bypass operations. A prospective, double-blind, randomized trial. J Thorac Cardiovasc Surg 1994; 108: 302–310.

    CAS  Google Scholar 

  46. Mickel DAG, Li R-K, Weisel RD, Birnbaum PL, Wu T-W, Jackowski G et al. Myocardial salvage with Trolox and ascorbic acid for an acute evolving infarction. Ann Thorac Surg 1989; 47: 553–557.

    Article  Google Scholar 

  47. Hosenpud JD, Novick KJ, Breen TJ, Keck B, Daily P. The Registry of the International Society of Heart and Lung Transplantation: Twelfth Official Report-1995. J Heart Lung Transplant 1995; 14: 805–815.

    PubMed  CAS  Google Scholar 

  48. Ott GY, Herschberger RE, Ratkovec RR, Norman D, Hosenpud JD, Cobanoglu A. Cardiac allografts from high-risk donors: Excellent clinical results. Ann Thorac Surg 1994; 57: 76–82.

    Article  PubMed  CAS  Google Scholar 

  49. Yacoub MH, McCloskey D, Festenstein H. Influence of human leukocyte antigen matching in cardiac transplantation. Seminars Thorac Cardiovasc Surg 1990; 2: 213–220.

    Google Scholar 

  50. Beizer OF, Southard HJ. Principles of solid-organ preservation by cold storage. Transplantation 1988; 45: 673–676.

    Google Scholar 

  51. Fremes SE, Li RK, Weisel RD, Mickle DAG, Tumiati LC. Prolonged hypothermic cardiac storage with University of Wisconsin solution: An assessment with human cell cultures. J Thorac Cardiovasc Surg 1991; 102: 666–672.

    PubMed  CAS  Google Scholar 

  52. Fremes SE, Zhang J, Furukawa RD, Mickle DAG, Weisel RD. Adenosine pretreatment for prolonged cardiac storage: an evaluation with St. Thomas’ and UW solution. J Thorac Cardiovasc Surg 1995; 110: 293–301.

    Article  PubMed  CAS  Google Scholar 

  53. Stein DG, Drinkwater DC, Laks H, Permut LC, Sangwan S, Chait HI et al. Cardiac preservation in patients undergoing transplantation. A clinical trial comparing University of Wisconsin solution and Stanford solution. J Thorac Cardiovasc Surg 1991; 102: 657–665.

    PubMed  CAS  Google Scholar 

  54. Jeevanandam V, Barr ML, Auteri JS, Sanchez JA, Fong J, Schenkel FA et al. University of Winconsin solution versus crystalloid cardioplegia for human donor heart preservation. A randomized blinded prospective clinical trail. J Thorac Cardiovasc Surg 1991; 103: 194–199.

    Google Scholar 

  55. Demertzis S, Wippermann J, Schaper J, Wahlers T, Schafers HJ, Wagenbreth I et al. University of Wisconsin solution versus St. Thomas’ Hospital solution for human donor heart preservation. Ann Thorac Surg 1993; 55: 1131–1137.

    Article  PubMed  CAS  Google Scholar 

  56. Myers ML, Webb C, Moffat M, Mclver D, Del Maestro R. Activated neutrophils impair rabbit heart recovery after hypothermic global ischemia. Ann Thorac Surg 1992; 53: 247–252.

    Article  PubMed  CAS  Google Scholar 

  57. Byrne JG, Appleyard RF, Lee CC, Couper GS, Scholl FG, Laurence RG et al. Controlled reperfusion of the regionally ischemic myocardium with leukocyte-depleted blood reduces stunning, the no-reflow phenomenon, and infarct size. J Thorac Cardiovasc Surg 1992; 103: 66–72.

    PubMed  CAS  Google Scholar 

  58. Breda MA, Drinkwater DC, Laks H, Bhuta S, Corono AF, Davtyan HG et al. Prevention of reperfusion injury in the neonatal heart with leukocyte-depleted blood. J Thorac Cardiovasc Surg 1989; 97: 654–665.

    PubMed  CAS  Google Scholar 

  59. Stein DG, Permut LC, Drinkwater DC, Bhuta S, Chang P, Wu A et al. Complete functional recovery after 24-hour heart preservation with University of Wisconsin solution and modified reperfusion. Circulation 1991; 84 [suppl III]: 316–323.

    Google Scholar 

  60. Bando K, Schueler S, Cameron DE, DeValeria PA, Hatanaka M, Casale AS et al. Twelve-hour cardiopulmonary preservation using donar core cooling, leukocyte depletion, and liposomal superoxide dismutase. J Heart Lung Transplant 1991; 10: 304–309.

    PubMed  CAS  Google Scholar 

  61. Pearl JM, Drinkwater DC, Laks H, Capouya ER, Gates RN. Leukocyte-depleted reperfusion of transplanted human hearts: A randomized, double-blind clinical trial. J Heart Lung Transplant 1992; 11: 1082–1092.

    PubMed  CAS  Google Scholar 

  62. Stringham JC, Southard JH, Hegge J, Triemstra L, Fields BL, Beizer FO. Limitations of heart preservation by cold storage. Transplantation 1992; 53: 287 - 294.

    Article  PubMed  CAS  Google Scholar 

  63. Barry WH, Peeters GA, Rasmussen CAF, Cunningham MJ: Role of changes in [CA2+]I in energy deprivation contracture. Circ Res 1987; 61: 726–734.

    PubMed  CAS  Google Scholar 

  64. Ikenouchi H, Zhao L, Barry WH. Effect of 2,3-butanedione monoxime on myocyte resting force during prolonged metabolic inhibition. Am J Physiol 1994; 267: H419–H430.

    PubMed  CAS  Google Scholar 

  65. Fremes SE, Guo LR, Furukawa RD, Mickle DAG, Weisel RD. Cardiac storage with UW solution and glucose. Ann Thorac Surg 1994; 58: 1368–1373.

    Article  PubMed  CAS  Google Scholar 

  66. Stringham JC, Paulsen KL, Southard JH, Fields BL, Beizer FO. Improved myocardial ischemic tolerance by contractile inhibition with 2,3-butanedione monoxime. Ann Thorac Surg 1992; 54: 852–860.

    Article  PubMed  CAS  Google Scholar 

  67. Stringham JC, Paulsen KL, Southard JH, Mentzer RM, Beizer FO. Prolonging myocardial preservation with a modified University of Wisconsin solution containing 2,3-butanedione monoxime and calcium. J Thorac Cardiovasc Surg 1994; 107: 764–775.

    PubMed  CAS  Google Scholar 

  68. Mankad P, Slavik Z, Yacoub M. Endothelial dysfunction caused by University of Wisconsin preservation solution in the rat heart. The importance of temperature. J Thorac Cardiovasc Surg 1992; 104: 1618–1624.

    Google Scholar 

  69. Cartier R, Hollman C, Dagenais F, Buluran J, Pellerin M, Ledere Y. Effects of University of Wisconsin solution on endothelium-dependent coronary artery relaxation in the rat. Ann Thorac Surg 1993; 55: 50–56.

    Article  PubMed  CAS  Google Scholar 

  70. Mankad PS, Chester AH, Yacoub MH. Role of potassium concentration in cardioplegie solutions in mediating endothelial damage. Ann Thorac Surg 1991; 51: 89–93.

    Article  PubMed  CAS  Google Scholar 

  71. Selke FW, Shafique T, Ely DL, Weintraub RM. Coronary endothelial injury after cardiopulmonary bypass and ischemic cardioplegia is mediated by oxygen-derived free radicals. Circulation 1993; 88: [part 2]: 395–400.

    Google Scholar 

  72. Pinsky DJ, Koga S, Oz M, Morales A, Nowygrod R, Cannon PJ et al. Failure of endogenous vasodilatation contributes to cardiac graft failure following prolonged storage. Circulation 1992; 86: 1–763.

    Google Scholar 

  73. Oz MC, Pinsky DJ, Koga S, Liao H, Marboe CC, Han D et al. Novel preservation solution permits 24-hour preservation in rat and baboon cardiac transplant models. Circulation 1993; 88 [part2]: 291–297.

    CAS  Google Scholar 

  74. Okada K, Yamashita C, Okada M, Okada M. Efficacy of oxygenated UW solution contained endothelin A receptor antagonist in 24-hour heart preservation. J Heart Lung Transplant 1995; 14: 579.

    Google Scholar 

  75. Myers ML, Mathur S, Li G-H, Karmazyn M. Sodium-hydrogen exchange inhibitors improve postischaemic recovery of function in the perfused rabbit heart. Cardiovasc Res 1995; 29: 209–214.

    PubMed  CAS  Google Scholar 

  76. Cohen NM, Wise RM, Wechsler AS, Damiano RJ. Elective cardiac arrest with a hyperpolarizing adenosine triphosphate-sensitive potassium channel opener. A novel form of myocardial protection? J Thorac Cardiovasc Surg 1993; 106: 317–328.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Berkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Myers, M.L., Fremes, S.E. (1996). Myocardial protection for cardiac surgery. In: Karmazyn, M. (eds) Myocardial Ischemia: Mechanisms, Reperfusion, Protection. EXS, vol 76. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8988-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8988-9_21

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9857-7

  • Online ISBN: 978-3-0348-8988-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics