Skip to main content

Signal transduction mechanisms in the ischemic and reperfused myocardium

  • Chapter
Myocardial Ischemia: Mechanisms, Reperfusion, Protection

Part of the book series: EXS ((EXS,volume 76))

  • 1394 Accesses

Abstract

Ischemic heart disease is currently one of the greatest causes of mortality in our society. As such, extensive research into the causes and consequences of myocardial ischemia has been conducted. Ischemia may be defined as any condition resulting in an imbalance of oxygen supply and demand resulting in a change from aerobic metabolism to anaerobic glycolysis. This metabolic change has been associated with alterations in electrolyte balance and accumulation of metabolic products which can result in decreased cardiac function and the generation of life threatening arrhythmias. Since second messengers are critical for the regulation of cardiac function in non-ischemic myocardium, it is important to understand the possible changes in signal transduction during ischemia as well as reperfusion of ischemic myocardium. Information regarding altered signal transduction is potentially beneficial in the creation both of new drugs and therapeutic strategies which would minimize tissue damage associated with ischemia and reperfusion injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Peres-Reyes E, Yuan W, Wei X, Bers DM. Regulation of the cloned L-type cardiac calcium channel by cyclic-AMP-dependent protein kinase. FEBS Lett 1994; 342: 119–23.

    Article  Google Scholar 

  2. Tada M, Katz AM. Phosphorylation of the sarcoplasmic reticulum and sarcolemma. Ann Rev Physiol 1982; 56: 615–49.

    Google Scholar 

  3. Levine TB, Francis GS, Goldsmith SR, Simon AB, Cogn JN. Activity of the sympathetic nervous system and renin-angiotensin system assessed by plasma hormone levels and their relation to hemodynamic abnormalities in congestive heart failure. Am J Cardiol 1982; 49: 1659–66.

    Article  PubMed  CAS  Google Scholar 

  4. Feldman AM. Experimental issues in assessment of G protein function in cardiac disease. Circulation 1991; 84: 1852–61.

    PubMed  CAS  Google Scholar 

  5. Yamamoto J, Ohyanagi M, Morita M, Iwasaki T. β-Adrenoceptor—G-protein—adenylate cyclase complex in rat hearts with ischemic heart failure produced by coronary artery ligation. J Mol Cell Cardiol 1994; 26: 617–24.

    Article  PubMed  CAS  Google Scholar 

  6. Kiuchi K, Shen Y-T, Vatner SF, Vatner DE. Mechanisms mediating responsiveness to β-adrenergic stimulation after coronary reperfusion in conscious dogs. Am J Physiol 1994; 267: H1578–88.

    PubMed  CAS  Google Scholar 

  7. Wolff AA, Hines DK, Karliner JS. Preserved β-adrenoceptor-mediated adenylyl cyclase activity despite receptor and postreceptor dysfunction in acute myocardial ischemia. Am Heart J 1994; 128: 542–50.

    Article  PubMed  CAS  Google Scholar 

  8. Bohm M, Reiger B, Schwinger RHG, Erdmann E. cAMP concentrations, cAMP dependent protein kinase activity, and phospholamban in non-failing and failing myocardium. Cardiovasc Res 1994; 28: 1713–9.

    CAS  Google Scholar 

  9. Kent RS, De Lean A, Lefkowitz RJ. A quantitative analysis of beta-adrenergic receptor interactions: resolution of high and low affinity states of the receptor by computer modelling of ligand binding data. Mol Pharmacol 1980; 17: 14–13.

    PubMed  CAS  Google Scholar 

  10. Stuver TP, Cove CJ, Hood WB Jr. Mechanical abnormalities in the rat ischemic heart failure model which lie downstream to cAMP production. J Mol Cell Cardiol 1994; 26: 1221–6.

    Article  PubMed  CAS  Google Scholar 

  11. Litwin SE, Morgan JP. Captopril enhances intracellular calcium handling and beta adrenergic responsiveness of myocardium from rats with post-infarction failure. Circ Res 1992; 71: 797–807.

    PubMed  CAS  Google Scholar 

  12. Sheridan DJ. Alpha adrenoceptors and arrhythmias. J Mol Cell Cardiol 1986; 18: 59 - 68.

    Article  PubMed  CAS  Google Scholar 

  13. Anyukhovsky EP, Rosen MR. Abnormal automatic rhythms in ischemic Purkinje fibres are modulated by a specific alpha 1-adrenergic receptor subtype. Circulation 1991; 83: 2076–82.

    PubMed  CAS  Google Scholar 

  14. Berridge MJ. Cell signalling. A tale of two messengers. Nature 1993; 365: 388–9.

    Article  PubMed  CAS  Google Scholar 

  15. Nishizuka Y. Intracellular signalling by hydrolysis of phospholipids and activation of protein kinase C. Science 1992; 258: 607–14.

    Article  PubMed  CAS  Google Scholar 

  16. Kurz T, Yamada KA, DaTorre SD, Corr PB. Alphal-adrenergic system and arrhythmias in ischaemic heart disease. Eur Heart J 1991; 12: 88–98.

    PubMed  Google Scholar 

  17. Khandoudi N, Moffat MP, Karmazyn M. Adrenosine-sensitive α1-adrenoceptor effects on reperfused ischaemic hearts: comparison with phorbol ester. Br J Pharmacol 1994; 112: 1007–16.

    PubMed  CAS  Google Scholar 

  18. Anderson KE, Dart AM, Woodcock EA. Inositol phosphate release and metabolism during myocardial ischemia and reperfusion in rat heart. Circ Res 1995; 76: 261–8.

    PubMed  CAS  Google Scholar 

  19. Yasutake M, Avkiran, M. Exacerbation of reperfusion arrhythmias by α1–adrenergic stimulation: a protential role for receptor mediated activation of sarcolemmal sodium-hydrogen exchange. Cardiovas Res 1995; 29: 222–30.

    CAS  Google Scholar 

  20. Karmazyn M. Role of sodium-hydrogen exchange in mediating myocardial ischemic and reperfusion injury. Mechanisms and therapeutic implications. In: Fliegel L, editor. The Na+/H+ Exchanger. Georgetown, TX: Landes Bioscience Publishers, 1996; Ch. 10.

    Google Scholar 

  21. Zhu Y, Nosek TM, Inositol trisphosphate enhances Ca2+ oscillations but not Ca2+-in-duced Ca2+ release from cardiac sarcoplasmic reticulum. PflĂĽg Arch 1991; 418: 1 - 6.

    Article  CAS  Google Scholar 

  22. Kahout TA, Rogers TB. Use of a PCR-based method to characterize protein kinase C isoform expression in cardiac cells. Am J Physiol 1993; 264: CI350-9.

    Google Scholar 

  23. Karmazyn M, Moffat MP. Role of Na+/H+ exchange in cardiac physiology and pathophysiology: mediation of myocardial reperfusion injury by the pH paradox. Cardiovas Res 1993; 27: 915 - 24.

    Article  CAS  Google Scholar 

  24. Tani M, Neely JR. Role of intracellular Na+ in Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts: possible involvement of H+-Na+ and Na+-Ca2+ exchange. Circ Res 1989; 65: 1045–56.

    PubMed  CAS  Google Scholar 

  25. Sack S, Mohri M, Schwartz ER, Arras M, Schaper J, Ballagi-Pordnay G, et al. Effects of a new Na+/H+ antiporter inhibitor on postischemic reperfusion in pig heart. Cardiovas Pharmacol 1994; 23: 72–8.

    Article  CAS  Google Scholar 

  26. Yasutake M, Ibuki C, Hearse DJ, Avkiran M. Na+/H+ exchange and reperfusion arrhythmias: protection by intracoronary infusion of a novel inhibitor. Am J Physiol 1994; 267: H2430–40.

    PubMed  CAS  Google Scholar 

  27. Frelin C, Vigne P, Ladoux A, Lazdunski M. The regulation of intracellular pH in cells from vertebrates. Eur J Biochem 1988; 174: 3–14.

    Article  PubMed  CAS  Google Scholar 

  28. Watson JE, Karmazyn M. Concentration-dependent effects of protein kinase C-activating and non-activating phorbol esters on myocardial contractility, coronary resistance, energy metabolism, prostacyclin synthesis, and ultrastructure in isolated rat hearts: effects of amiloride. Circ Res 1991; 1114–31.

    Google Scholar 

  29. MacLeod KT, Harding SE. Effects of phorbol ester on contraction, intracellular pH and intracellular Ca2+ in isolated mammalian ventricular myocytes. J Physiol (London) 1991; 444: 481–98.

    CAS  Google Scholar 

  30. Gambassi G, Spurgeon HA, Lakatta EG, Blank PS, Capogrossi MC. Different effects of α- and β-adrenergic stimulation on cytosolic pH and myofilament responsiveness to Ca2+ in cardiac myocytes. Circ Res 1992; 71: 870–82.

    PubMed  CAS  Google Scholar 

  31. Wallert MA, Fröhlich O. α-Adrenergic stimulation of Na-H exchange in cardiac myocytes. Am J Physiol 1992; 263: C1096–102.

    PubMed  CAS  Google Scholar 

  32. Puceat M, Clement-Chomienne O, Terzic A, Vassort G. a-Adrenoceptor and purinoceptor agonists modulate Na-H antiport in single cardiac cells. Am J Physiol 1993; 264: H310–9.

    PubMed  CAS  Google Scholar 

  33. Fliegel L, Walsh MP, Singh D, Wong C, Barr A. Phosphorylation of the C-terminal domain of the Na+/H+ exchanger by Ca2+/calmodulin-dependent protein kinase II. Biochem J 1992; 282: 915–24.

    Google Scholar 

  34. Downey JM, Cohen MV, Ytrehus K, Liu T. Cellular mechanisms in ischemic preconditioning: the role of adenosine and protein kinase C. Ann NY Acad Sci 1994; 723: 82–98.

    Article  PubMed  CAS  Google Scholar 

  35. Exton JH. Phosphatidylcholine breakdown and signal transduction. Biochimica et Biophysica Acta 1994; 1212: 26–42.

    PubMed  CAS  Google Scholar 

  36. Buja LM. Lipid abnormalities in myocardial cell injury. Trends Cardiovas Med 1991; 1: 40–5.

    Article  CAS  Google Scholar 

  37. van der Vusse GJ, Glatz JFC, Stan HCG, Reneman RS. Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev 1992; 72: 881–940.

    PubMed  Google Scholar 

  38. Chien KR, Han A, Sen A, Buja LM, Willerson JT. Accumulation of unesterified arachidonic acid in ischemic canine myocardium. Circ Res 1984; 54: 313–22.

    PubMed  CAS  Google Scholar 

  39. van Bilsen M, van der Vusse GJ, Willemson PHM, Courmans WA, Roemen THM, Renemen RS. Lipid alterations in isolated working rat hearts during ischemia and reperfusion: its relation to myocardial damage. Circ Res 1989; 64: 304–14.

    PubMed  Google Scholar 

  40. Corr PB, Yamada KA, Creer MH, Sharma AD, Sobel BE. Lysophosphoglycerides and ventricular fibrillation early after onset of ischemia. J Mol Cell Cardiol 1987; 19 (V): 45–53.

    Article  PubMed  CAS  Google Scholar 

  41. Otani H, Prasad MR, Engelman RM, Otani H, Cordis GA, Das DK. Enhanced phosphodiesteric breakdown and turnover of phosphoinositides during reperfusion of ischemic rat heart. Circ Res 1988; 63: 930–6.

    PubMed  CAS  Google Scholar 

  42. Otani H, Prasad MR, Jones RM, Das DK. Mechanisms of membrane phospholipid degradation in ischemic-reperfused rat hearts. Am J Physiol 1989; 257: H252–8.

    PubMed  CAS  Google Scholar 

  43. Prasad L, Popescu LM, Moraru II, Liu X, Maity S, Engelman RM, Das DK. Role of phospholipases A2 and C in myocardial reperfusion injury. Am J Physiol 1991; 260: H877–83.

    PubMed  CAS  Google Scholar 

  44. Moraru II, Popescu LM, Liu X, Engelman RM, Das DK. Role of phospholipases A2, C and D activities during myocardial ischemia and reperfusion. Ann NY Acad Sci 1994; 723: 328–32.

    Article  PubMed  CAS  Google Scholar 

  45. Quist E, Satumtira N, Powell P. Regulation of phosphoinositide synthesis in cardiac muscle. Archives of Biochemistry and Biophysics 1989; 271: 21–32.

    Article  PubMed  CAS  Google Scholar 

  46. Kasinathan C, Xu ZC, Kirchberger MA. Phosphoinositide formation in isolated cardiac plasma membranes. Lipids 1989; 24: 818–23.

    Article  PubMed  CAS  Google Scholar 

  47. Nataranjan V, Taher MM, Roehm B, Parinandi NL, Schmid HHO, Kiss Z, Garcia JGN. Activation of endothelial cell phospholipase D by hydrogen peroxide and fatty acid hydroperoxide. J Biol Chem 1993; 286: 930–7.

    Google Scholar 

  48. Kiss Z, Anderson WH. Hydrogen peroxide regulates phospholipase D-mediated hydrolysis of phosphatidylethanolamine and phosphatidylcholine by different mechanisms in NIH 3T3 fibroblasts. Archives of Biochemistry and Biophysics 1994; 311: 430–436.

    Article  PubMed  CAS  Google Scholar 

  49. Whorton AR, Montgomery ME, Kent RS. Effect of hydrogen peroxide on prostaglandin production and cellular integrity in cultured procine aortic endothelial cells. J Clin Invest 1985; 76: 295–302.

    Article  PubMed  CAS  Google Scholar 

  50. Chakraborti S, Gurtner GH, Michael JR. Oxidant-mediated activation of phospholipase A2 in pulmonary endothelium. Am J Physiol 1989; 257: L430–7.

    PubMed  CAS  Google Scholar 

  51. Shasby DM, Yorek, M, Shasby SS. Exogenous oxidants initiate hydrolysis of endothelial cell inositol phospholipids. Blood 1988; 72: 491–9.

    PubMed  CAS  Google Scholar 

  52. Taher MM, Garcia JGN, Natarajan V. Hydroperoxide-induced diacylglycerol formation and protein kinase C activation in vascular endothelial cells. Arch Biochem Biophys 1993; 303: 260–6.

    Article  PubMed  CAS  Google Scholar 

  53. Garlick PB, Davies MJ, Hearse DJ, Slater TF. Direct detection of free radicals in the reperfused rat heart using electron spin resonance spectroscopy. Circ Res 1987; 61: 757–60.

    PubMed  CAS  Google Scholar 

  54. Zweier JL, Flaherty JT, Weisfeldt ML. Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci USA 1987; 84: 1404–7.

    Article  PubMed  CAS  Google Scholar 

  55. Beresewicz A, Horackova M. Alterations in electrical and contractile behaviour of isolated cardiomyocytes by hydrogen peroxide: possible ionic mechanisms. J Mol Cell Cardiol 1991; 23: 899–918.

    Article  PubMed  CAS  Google Scholar 

  56. Duan J, Moffat MP. Potential cellular mechanisms of hydrogen peroxide-induced cardiac arrhythmias. J Cardiovas Pharmacol 1992; 19: 593–601.

    Article  CAS  Google Scholar 

  57. Harrison GJ, Jordan LR, Willis RJ. Deleterious effects of hydrogen peroxide on the function and ultrastructure of cardiac muscle and the coronary vasculature of perfused rat hearts. Can J Cardiol 1994; 10: 843–9.

    PubMed  CAS  Google Scholar 

  58. Ha H, Endou H. Lipid peroxidation in isolated rat nephron segments. Am J Physiol 1992; 263: F201–7.

    PubMed  CAS  Google Scholar 

  59. Hyashi H, Miyata H, Watanabe H, Kobayashi A, Yamazaki N. Effects of hydrogen peroxide on action potentials and intracellular Ca2+ concentrations of guinea pig heart. Cardiovas Res 1989; 23: 767–73.

    Article  Google Scholar 

  60. Larsson R, Cerutti P. Translocation and enhancement of phosphotransferase activity of protein kinase C following exposure in mouse epidermal cells tooxidants. Cancer Res 1989; 49: 5627–32.

    PubMed  CAS  Google Scholar 

  61. Palumbo E J, Sweatt JD, Chen S-J, Klann E. Oxidant-induced persistent activation of protein kinase C in hippocampal homogenates. Biochem Biophys Res Commun 1992; 187: 1439–45.

    Article  PubMed  CAS  Google Scholar 

  62. Gopalakrishna R, Anderson WB. Ca2+- and phospholipid-independent activation of protein kinase C by selective oxidative modification of the regulatory domain. Proc Natl Acad Sci USA 1989; 86: 6758–62.

    Article  PubMed  CAS  Google Scholar 

  63. Kazanietz MG, Krausz KW, Blumberg PM. Differential irreversible insertion of protein kinase C into phospholipid vesicles by phorbol esters and related activators. J Biol Chem 1992; 267: 20878–86.

    PubMed  CAS  Google Scholar 

  64. Ward CA, Moffat MP. Role of protein kinase C in mediating effects of hydrogen peroxide in guinea pig ventricular myocytes. J Mol Cell Cardiol 1995; 27: 1089–1097.

    Article  PubMed  CAS  Google Scholar 

  65. Lefer AM, Tsao PS, Lefer DJ, Ma SL. Role of endothelial dysfunction in the pathogenesis of reperfusion injury after myocardial ischemia. FASEB J 1991; 5: 2029–34.

    PubMed  CAS  Google Scholar 

  66. Matheis G, Sherman MP, Buckberg GD, Haybron DM, Young HH, Ignarro L. Role of L-arginine-nitric oxide pathway in myocardial reoxygenation injury. Am J Physiol 1992; 262: H616–20.

    PubMed  CAS  Google Scholar 

  67. Zweier JL, Wang P, Kuppusamy P. Direct measurement of nitric oxide generation in the ischemic heart using electron paramagnetic resonance spectroscopy. J Biol Chem 1995; 270: 304–7.

    Article  PubMed  CAS  Google Scholar 

  68. Depre C, Hue L. Cyclic GMP in the perfused rat heart: effect of ischaemia, anoxia and nitric oxide synthase inhibitor. FEBS Lett 1994; 345: 241–5.

    Article  PubMed  CAS  Google Scholar 

  69. Ehring T, Baumgart D, Krajcar M, Hummelgen M, Kompa S, Heusch G. Attenuation of myocardial stunning by the ACE inhibitor ramiliprilat through a signal cascade of bradykinin and prostaglandins but not nitric oxide. Circulation 1994; 90: 1368–85.

    PubMed  CAS  Google Scholar 

  70. Rubin LE, Levi R. Protective role of bradykinin in cardiac anaphylaxis: coronary vasodilating and antiarrhythmic activities mediated by autocrine/paracrine mechanisms. Circ Res 1995; 76: 434–40.

    PubMed  CAS  Google Scholar 

  71. Martorana PA, Kettenbach B, Bohn H, Schonafinger K, Henning R. Antiischemic effects of pirsidomine, a new nitric oxide donor. Eur J Pharmacol 1994; 257: 267–73.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Ward, C.A., Moffat, M.P., Karmazyn, M. (1996). Signal transduction mechanisms in the ischemic and reperfused myocardium. In: Karmazyn, M. (eds) Myocardial Ischemia: Mechanisms, Reperfusion, Protection. EXS, vol 76. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8988-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8988-9_12

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9857-7

  • Online ISBN: 978-3-0348-8988-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics