Skip to main content

The sperm-specific pyruvate dehydrogenase E1α genes

  • Chapter
Alpha-Keto Acid Dehydrogenase Complexes

Part of the book series: MCBU Molecular and Cell Biology Updates ((MCBU))

Abstract

All cells require energy for function. This is generated partly through catabolic processes in which carbohydrates, fatty acids and amino acids are converted to metabolites which then can be used in energy-producing reactions. Although some energy can be, and is, generated by anaerobic metabolism (e.g., in glycolysis), most energy in mammalian cells is generated through aerobic energy production in the mitochondria. Nearly all tissues can use carbohydrates, fatty acids and amino acids for energy production. Despite this, they do have certain individual preferences and this leads to cooperation between various cells and tissues in the body. For example, under normal circumstances the liver uses mainly fatty acids and exports glucose. Muscles mainly use glucose for energy production, but can, if necessary, use some of the alternative energy sources. However, this is not true of all tissues. Brain and sperm cells are unique in that they generate nearly all their energy from carbohydrates or derivatives thereof (Fig. 1) and are therefore likely to be more severely affected by deficiencies in their cells’ ability to convert carbohydrates to energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brown, R.M., Dahl, H.-H.M. and Brown, G.K. (1989a) X-Chromosome location of the functional gene for the E1α subunit of the human pyruvate dehydrogenase complex. Genomics 4: 174–181.

    Article  PubMed  CAS  Google Scholar 

  • Brown, G.K., Brown, R.M., Scholem, R.D., Kirby, D.M. and Dahl, H.-H.M. (1989b) The clinical and biochemical spectrum of human pyruvate dehydrogenase deficiency. Ann. N.Y. Acad. Sci. 573: 360–368.

    Article  PubMed  CAS  Google Scholar 

  • Brown, R.M., Dahl, H.-H.M. and Brown, G.K. (1990) Pyruvate dehydrogenase E1α subunit genes in the mouse: mapping and comparison with human homologues. Som. Cell. Mol. Gen. 16: 487–492.

    Article  CAS  Google Scholar 

  • Brown, G.K., Otero, L.J., LeGris, M. and Brown, R.M. (1994) Pyruvate dehydrogenase deficiency. J. Med. Genet. 31: 875–879.

    Article  PubMed  CAS  Google Scholar 

  • Cullingford, T.E., Clark, J.B. and Phillips, I.R. (1993) Characterization of cDNAs encoding the rat testis-specific E1α subunit of the pyruvate dehydrogenase complex: comparison of expression of the corresponding mRNA with that of the somatic E1α subunit. Biochim. Biophys. Acta 1216: 149–153.

    PubMed  CAS  Google Scholar 

  • Dahl, H.-H.M., Brown, R.M., Hutchison, W.M., Maragos, C. and Brown, G.K. (1990) A testis-specific form of the human pyruvate dehydrogenase E1α subunit is coded for by an intronless gene on chromosome 4. Genomics 8: 225–232.

    Article  PubMed  CAS  Google Scholar 

  • Dahl, H.-H.M. (1995) Pyruvate dehydrogenase E1α deficiency: Males and females differ yet again. Am. J. Hum. Genet. 56: 553–557.

    PubMed  CAS  Google Scholar 

  • Erickson, R.P., Kramer, J.M., Rittenhouse, J. and Salkeld, A. (1980) Quantitation of mRNAs during spermatogenesis: protamine-like histone and phosphoglyceratekinase-2 mRNAs increase after meiosis. Proc. Natl. Acad. Sci. USA 77: 6086–6090.

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald, J., Hutchison, W.M. and Dahl, H.H. (1992) Isolation and characterisation of the mouse pyruvate dehydrogenase E1 alpha genes. Biochim. Biophys. Acta 1131: 83–90.

    PubMed  CAS  Google Scholar 

  • Fitzgerald, J., Wilcox, S.A., Graves, J.A.M. and Dahl, H.-H.M. (1993) A eutherian X-linked gene, PDHA1, is autosomal in marsupials: A model for the evolution of a second, testis-specific variant in eutherian mammals. Gemonics 18: 636–642.

    CAS  Google Scholar 

  • Fitzgerald, J., Dahl, H.–H.M. and Iannello, R.C. (1994) Differential expression of two testis-specific transcripts of the mouse pdha-2 gene during spermatogenesis. DNA & Cell Biol. 13: 531–537.

    Article  CAS  Google Scholar 

  • Frommer, M., McDonald, L.E., Millar, D.S., Collis, C.M., Watt, F., Grigg, G.W., Molloy, P.L. and Paul, C.L. (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. USA 89: 1827–1831.

    Article  PubMed  CAS  Google Scholar 

  • Gold, B., Fujimoto, H., Kramer, J.M., Erickson, R.P. and B., H.N. (1983) Haploid accumulation and translational control of phosphoglycerate kinase-2 mRNA during mouse spermatogenesis. Dev. Biol. 8: 392–399.

    Article  Google Scholar 

  • Graves, J.A.M. and Watson, J.M. (1991) Mammalian sex chromosomes: Evolution of organisation and function. Chromosoma 101: 63–68.

    Article  PubMed  CAS  Google Scholar 

  • Higgins, D.G. and Sharp, P.M. (1988) CLUSTAL: a package for performing multiple sequence alignments on a microcomputer. Gene 73: 237–244.

    Article  PubMed  CAS  Google Scholar 

  • Higgins, D.G. and Sharp, P.M (1989) Fast and sensitive multiple sequence alignments on a microcomputer. CABIOS 5: 151–153.

    PubMed  CAS  Google Scholar 

  • Iannello, R.C. and Dahl, H.-H.M. (1992) Transcriptional expression of a testis-specific variant of the mouse pyruvate dehydrogenase E1α subunit. Biol. Reprod. 47: 48–58.

    Article  PubMed  CAS  Google Scholar 

  • Iannello, R.C., Fitzgerald, J. and Dahl, H.-H.M. (1993a) The mouse testis-specific PDH E1α subunit: Transcriptional expression and interaction of a proximal promoter with putative transcription factors. In: K. Reed and J. Graves (eds): Mammalian Sex Chromosomes and Sex-determining Genes. Harwood Academic Publishers, Switzerland, pp 87–104.

    Google Scholar 

  • Iannello, R.C., Kola, I. and Dahl, H.H. (1993b) Temporal and tissue-specific interactions involving novel transcription factors and the proximal promoter of the mouse pdha-2 gene. J. Biol. Chem. 268: 22581–22590.

    PubMed  CAS  Google Scholar 

  • Iannello, R.C., Young, J.C. and Kola, I. (1994) Pdha-2: a model for studying transcriptional regulation in early spermatocytes. Mol. Reprod. Dev. 39: 194–199.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, P.A., Peschon, J.J., Yelick, P.C., Palmiter, R.D. and Hecht, N.B. (1988) Sequence homologies in the mouse protamine 1 and 2 genes. Biochim. Biophys. Acta 950: 45–53.

    PubMed  CAS  Google Scholar 

  • Johnson, K.R., Komuniecki, R., Sun, Y. and Wheelock, M.J. (1992) Characterization of cDNA clones for the alpha subunit of pyruvate dehydrogenase from Ascaris suum. Mol. Biochem. Parasitol. 51: 37–47.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Li, W.H. and Tanimura, M. (1987) The molecular clock runs more slowly in man than in apes and monkeys. Nature 326: 93–96.

    Article  PubMed  CAS  Google Scholar 

  • Li, W.H. and Wu, C.I. (1987) Rates of nucleotide substitution are evidently higher in rodents than in man. Mol. Biol. Evol. 4: 74–82.

    PubMed  Google Scholar 

  • Maragos, C., Hutchison, W.M., Hayasaka, K., Brown, G.K. and Dahl, H.-H.M. (1989) Structural organization of the gene for the E1α subunit of the human pyruvate dehydrogenase complex. J. Biol. Chem. 264: 12294–12298.

    PubMed  CAS  Google Scholar 

  • Martin, A.P. and Palumbi, S.R. (1993) Body size, metabolic rate, generation time, and the molecular clock. Proc. Natl. Acad. Sci. USA 90: 4087–4091.

    Article  PubMed  CAS  Google Scholar 

  • McCarrey, J.R. and Thomas, K. (1987) Human testis-specific PGK gene lacks introns and possesses characteristics of a processed gene. Nature 326: 501–505.

    Article  PubMed  CAS  Google Scholar 

  • McCarrey, J.R. (1990) Molecular evolution of the human Pgk-2 retroposon. Nucleic Acids Res. 18: 949–955.

    Article  PubMed  CAS  Google Scholar 

  • McCarrey, J.R., Berg, W.M., Paragioudakis, S.J., Zhang, P.L., Dilworth, D.D., Arnold, B.L. and Rossi, J.J. (1992) Differential transcription of Pgk genes during spermatogenesis in mouse. Dev. Biol. 154: 160–168.

    Article  PubMed  CAS  Google Scholar 

  • Michelson, A.M., Blake, C.C., Evans, S.T. and Orkin, S.H. (1985) Structure of the human phosphoglycerate kinase gene and the intron-mediated evolution and dispersal of the nucleotide-binding domain. Proc. Natl. Acad. Sci. USA 82: 6965–6969.

    Article  PubMed  CAS  Google Scholar 

  • Patel, M.S. and Roche, T.E. (1990) Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J. 4: 3224–3233.

    PubMed  CAS  Google Scholar 

  • Reed, L.J. (1974) Multienzyme complexes. Acc. Chem. Res. 7: 40–46.

    Article  CAS  Google Scholar 

  • Robertson, N.G., Pomponio, R.J., Mutter, G.L. and Morton, C.C. (1991) Testis-specific expression of the human MYCL2 gene. Nucleic Acids Res. 19: 3129–3137.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, B.H. (1989) Lactic acidemia. In: C.R. Schriver, A.L. Beaudet, W.S. Sly and D. Valle (eds): The Metabolic Basis of Inherited Disease, Sixth Edition. McGraw Hill, New York, pp 869–888.

    Google Scholar 

  • Romrell, L.J., Bellve, A.R. and Fawcett, D.W. (1976) Separation of mouse spermatogenic cells by sedimentation velocity. Dev. Biol. 49: 119–131.

    Article  PubMed  CAS  Google Scholar 

  • Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    PubMed  CAS  Google Scholar 

  • Sarich, V.M. and Wilson, A.C. (1967) Immunological time scale for hominid evolution. Science 158: 1200–1203.

    Article  PubMed  CAS  Google Scholar 

  • Shashidharan, P., Michaelidis, T.M., Robakis, NX, Kresovali, A., Papamatheakis, J. and Plaitakis, A. (1994) Novel human glutamate dehydrogenase expressed in neural and testicular tissues and encoded by an X-linked intronless gene. J. Biol. Chem. 269: 16971–6.

    PubMed  CAS  Google Scholar 

  • Shaw, G. and Kamen, R. (1986) A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46: 659–67.

    Article  PubMed  CAS  Google Scholar 

  • Shevell, M.I., Matthews, P.M., Scriver, C.R., Brown, R.M., Otero, L.J., Legris, M., Brown, G.K. and Arnold, D.L. (1994) Cerebral dysgenesis and lactic acidemia: An MRI/MRS phenotype associated with pyruvate dehydrogenase deficiency. Pediatr. Neurol. 11: 224–229.

    Article  PubMed  CAS  Google Scholar 

  • Solari, A.J. (1989) Sex chromosome pairing and fertility in the heterogametic sex of mammals and birds. In: C.B. Gillies (ed.): Fertility and Chromosome Pairing: Recent Studies in Plants and Animals. CRC Press, Boca Raton, pp 77–107.

    Google Scholar 

  • Su, H. and Lau, Y.F. (1993) Identification of the transcriptional unit, structural organization, and promoter sequence of the human sex-determining region Y (SRY) gene, using a reverse genetic approach. Am. J. Hum. Genet. 52: 24–38.

    PubMed  CAS  Google Scholar 

  • Takakubo, F. and Dahl, H.-H.M. (1992) The expression pattern of the pyruvate dehydrogenase E1α subunit genes during spermatogenesis in adult mouse. Exp. Cell Res. 199: 39–49.

    Article  PubMed  CAS  Google Scholar 

  • Takano, T. and Li, S.S. (1989) Human testicular lactate dehydrogenase-C gene is interrupted by six introns at positions homologous to those of LDH-A (muscle) and LDH-B (heart) genes. Biochem. Biophys. Res. Comm. 159: 579–83.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, K., Del, M.J., Eversole, P., Bellve, A., Hiraoka, Y., Li, S.S. and Simon, M. (1990) Developmental regulation of expression of the lactate dehydrogenase (LDH) multigene family during mouse spermatogenesis. Development 109: 483–493.

    PubMed  CAS  Google Scholar 

  • VandeBerg, J.L. (1985) The phosphoglycerate kinase isozyme system in mammals: biochemical, genetic, developmental, and evolutionary aspects. Curr. Top. Biol. Med. Res. 12: 133–187.

    CAS  Google Scholar 

  • Wu, C.I. and Li, W.H. (1985) Evidence for higher rates of nucleotide substitution in rodents than in man. Proc. Natl. Acad. Sci. USA 82: 1741–1745.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Dahl, HH.M., Fitzgerald, J., Iannello, R. (1996). The sperm-specific pyruvate dehydrogenase E1α genes. In: Patel, M.S., Roche, T.E., Harris, R.A. (eds) Alpha-Keto Acid Dehydrogenase Complexes. MCBU Molecular and Cell Biology Updates. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8981-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8981-0_16

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9853-9

  • Online ISBN: 978-3-0348-8981-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics