Skip to main content

Hormonal and nutritional modulation of PDHC activity status

  • Chapter
Alpha-Keto Acid Dehydrogenase Complexes

Part of the book series: MCBU Molecular and Cell Biology Updates ((MCBU))

Abstract

In animals, glucose oxidation is decreased by starvation and diabetes (reviewed by Randle, 1986; Patel and Roche, 1990; Sugden and Holness, 1994). As well as short-term effects of starvation and diabetes to suppress glucose oxidation, long-term regulatory mechanisms impose an upper limit on the overall capacity for glucose oxidation and introduce latency of reactivation of glucose oxidation when a high-carbohydrate, low-fat meal is provided, or when insulin is administered after prolonged starvation. These characteristics of whole-body glucose oxidation reflect the activity and regulatory characteristics of the mitochondrial pyruvate dehydrogenase holocomplex (PDHC), which catalyses the oxidative decarboxylation of pyruvate to acetyl CoA. This chapter will review the regulation of PDHC by hormones and nutrients within the context of the competition between fatty acids (FA) and glucose as oxidative substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boden, G., Chen, X., Ruiz, J., White, J.V. and Rossetti, L. (1994) Mechanisms of fatty acid-induced inhibition of glucose uptake. J. Clin. Invest. 93: 2438–2446.

    Article  PubMed  CAS  Google Scholar 

  • Caterson, I.D., Fuller, S.J. and Randle, P.J. (1982) Effects of the fatty acid oxidation inhibitor 2-tetradecylglycidic acid on pyruvate dehydrogenase complex activity in starved and alloxan-diabetic rats. Biochem. J. 28: 53–60.

    Google Scholar 

  • Consoli, A., Nuijhan, N., Reilly, J.J., Jr., Bier, D.M. and Gerich, J.E. (1990) Mechanisms of increased gluconeogenesis in non-insulin dependent diabetes mellitus. J. Clin. Invest. 87: 2083–2045.

    Google Scholar 

  • Cooney, G.J., Denyer, G.S., Jenkins, A.B., Storlien, L.H., Kraegen, E.W. and Caterson, I.D. (1993) In vivo insulin sensitivity of the pyruvate dehydrogenase complex in tissues of the rat. Am. J. Physiol. 265: E102–E107.

    PubMed  CAS  Google Scholar 

  • Denton, R.M. and McCormack, J.G. (1985) Ca2+ transport by mammalian mitochondria and its role in hormone action. Am. J. Physiol. 249: E543–E554.

    PubMed  CAS  Google Scholar 

  • Denton, R.M. and McCormack, J.G. (1990) Ca2+ as a second messenger within mitochondria of the heart and other tissues. Ann. Rev. Physiol. 52: 451–466.

    Article  CAS  Google Scholar 

  • Fanelli, C.G., DeFeo, P., Porcellati, F., Perriello, G., Torlone, E., Santeusanio, F., Brunetti, P. and Bolli, G.B. (1992) Adrenergic mechanisms contribute to the late phase of hypoglycemic glucose counterregulation in humans by stimulating lipolysis. J. Clin. Invest. 89: 2005–5013.

    Article  PubMed  CAS  Google Scholar 

  • Fatania, H.R., Vary, T.C. and Randle, P.J. (1986) Modulation of pyruvate dehydrogenase kinase in cultured hepatocytes by glucagon and n-octanoate. Biochem. J. 234: 233–236.

    PubMed  CAS  Google Scholar 

  • Holness, M.J., Palmer, T.N., Worrall, E.B. and Sugden, M.C. (1987) Hepatic carbon flux after re-feeding in the glycogen-storage-disease (gsd/gsd) rat. Biochem. J. 248: 969–972.

    PubMed  CAS  Google Scholar 

  • Holness, M.J., MacLennan, P.A., Palmer, T.N. and Sugden, M.C. (1988) The disposition of carbohydrate between glycogenesis, lipogenesis and oxidation in liver during the starved-to-fed transition. Biochem. J. 252: 325–330.

    PubMed  CAS  Google Scholar 

  • Holness, M.J. and Sugden, M.C. (1989) Pyruvate dehydrogenase activities during the fed-to-starved transition and on re-feeding after acute or prolonged starvation. Biochem. J. 258: 529–533.

    PubMed  CAS  Google Scholar 

  • Holness, M.J., Liu, Y.-L. and Sugden, M.C. (1989) Time–courses of the responses of pyruvate dehydrogenase activities to short-term starvation in diaphragm and selected skeletal muscles of the rat. Biochem. J. 264: 771–776.

    PubMed  CAS  Google Scholar 

  • Holness, M.J. and Sugden, M.C. (1990a) Glucose utilization in heart, diaphragm and skeletal muscle during the fed-to-starved transition. Biochem. J. 270: 245–249.

    PubMed  CAS  Google Scholar 

  • Holness, M.J. and Sugden, M.C. (1990b) Pyruvate dehydrogenase activities and rates of lipogenesis during the fed-to-starved transition in liver and brown adipose tissue of the rat. Biochem. J. 268: 77–81.

    PubMed  CAS  Google Scholar 

  • Holness, M.J., Liu, Y.-L., Beech, J.S. and Sugden, M.C. (1991) Glucose utilization by interscapular brown adipose tissue in vivo during nutritional transitions in the rat. Biochem. J. 273: 233–235.

    PubMed  CAS  Google Scholar 

  • Holness, M.J. (1995) Dietary-induced insulin resistance in brown adipose tissue at the level of glucose oxidation. Diabetic Medicine; in press.

    Google Scholar 

  • Jahoor, F., Klein, S. and Wolfe, R. (1992) Mechanisms of regulation of glucose production by lipolysis in humans. Am. J. Physiol. 262: E353–E358.

    PubMed  CAS  Google Scholar 

  • Jensen, M.D., Haymond, M.W., Gerich, J.E., Cryer, P.E. and Miles, J.M. (1987) Lipolysis during fasting: decreased suppression by insulin and increased stimulation by epinephrine. J. Clin. Invest. 87: 207–213.

    Article  Google Scholar 

  • Jones, B.S., Yeaman, S.J., Sugden, M.C. and Holness, M.J. (1992) Hepatic pyruvate dehydrogenase kinase activities during the starved-to-fed transition. Biochim. Biophys. Acta 1134: 164–168.

    Article  PubMed  CAS  Google Scholar 

  • Kerbey, A.L., Randle, P.J., Cooper, R.H., Whitehouse, S., Pask, H.T. and Denton, R.M. (1976) Regulation of pyruvate dehydrogenase in rat heart. Mechanism of regulation of proportions of dephosphorylated and phosphorylated enzyme by oxidation of fatty acids and ketone bodies and of effects of diabetes: role of coenzyme A, acetyl-coenzyme A and reduced and oxidized and oxidized nicotinamide-adenine dinucleotide. Biochem. J. 154: 327–348.

    PubMed  CAS  Google Scholar 

  • Kerbey, A.L. and Randle, P.J. (1982) Pyruvate dehydrogenase kinase/activator in rat heart mitochondria. Assay, effect of starvation, and effect of protein-synthesis inhibitors in starvation. Biochem. J. 206: 103 –111.

    Google Scholar 

  • Kraegen, E.W., Clark, P.W., Jenkins, A.B., Daley, E.A., Chisholm, D.J. and Storlien, L.H. (1991) Development of muscle insulin resistance after liver insulin resistance in high-fat-fed rats. Diabetes 40: 1397–1403.

    Article  PubMed  CAS  Google Scholar 

  • Marchington, D.R., Kerbey, A.L., Jones, A.E. and Randle, P.J. (1987) Insulin reverses effects of starvation on the activity of pyruvate dehydrogenase kinase in cultured hepatocytes. Biochem. J. 246: 233–236.

    PubMed  CAS  Google Scholar 

  • Marchington, D.R., Kerbey, A.L., Giardina, M.G., Jones, A.E. and Randle, P.J. (1989) Longer-term regulation of pyruvate dehydrogenase kinase in cultured rat hepatocytes. Biochem. J. 257: 487–491.

    PubMed  CAS  Google Scholar 

  • Moir, A.M. B. and Zammit, V.A. (1992) Selective labelling of hepatic fatty acids in vivo. Studies on the synthesis and secretion of glycerolipids in the rat. Biochem. J. 283: 145–149.

    PubMed  CAS  Google Scholar 

  • Moir, A.M. B. and Zammit, V.A. (1993) Monitoring of changes in hepatic fatty acid and glycerolipid metabolism during the starved-to-fed transition in vivo. Biochem. J. 289: 49–55.

    PubMed  CAS  Google Scholar 

  • Orfali, K.A., Fryer, L.G. D., Holness, M.J. and Sugden, M.C. (1993) Long-term regulation of pyruvate dehydrogenase kinase by high-fat feeding. FEBS Lett. 336: 501 –505.

    Google Scholar 

  • Orfali, K.A., Fryer, L.G. D., Holness, M.J. and Sugden, M.C. (1995) Interactive effects of insulin and triiodothyronine on pyruvate dehydrogenase kinase activity in cardiac myocytes. J. Mol. Cell. Cardiol. 27: 901–908.

    Article  PubMed  CAS  Google Scholar 

  • Patel, M.S. and Roche, T.E. (1990) Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J. 4: 3224–3233.

    PubMed  CAS  Google Scholar 

  • Randle, P.J. (1986) Fuel selection in animals. Biochem. Soc. Trans. 14: 799–806.

    PubMed  CAS  Google Scholar 

  • Randle, P.J., Kerbey, A.L. and Espinal, J. (1988) Mechanisms decreasing glucose oxidation in diabetes and starvation: role of lipid fuels and hormones. Diabetes Metab. Rev. 4: 623–638.

    Article  PubMed  CAS  Google Scholar 

  • Randle, P.J., Priestman, D.A., Mistry, S. and Halsall, A. (1994) Mechanisms modifying glucose oxidation in diabetes mellitus. Diabetologia 37: S155–S161.

    Article  PubMed  CAS  Google Scholar 

  • Reaven, G.M. (1995) The fourth Musketeer - from Alexandre Dumas to Claude Bernard. Diabetologia 38: 3–13.

    Article  PubMed  CAS  Google Scholar 

  • Rossetti, L. and Hu, M. (1993) Skeletal muscle glycogenolysis is more sensitive to insulin than is glucose transport/phosphorylation. Relation to the insulin-mediated inhibition of hepatic glucose production. J. Clin. Invest. 92: 2963–2974.

    Article  PubMed  CAS  Google Scholar 

  • Stace, P.B., Marchington, D.R., Kerbey, A.L. and Randle, P.J. (1990) Long-term culture of rat soleus muscle in vitro. Its effects on glucose utilization and insulin sensitivity. FEBS Lett. 273: 91–94.

    Article  PubMed  CAS  Google Scholar 

  • Stace, P.B., Fatania, H.R., Jackson, A., Kerbey, A.L. and Randle, P.J. (1992) Cyclic AMP and free fatty acids in the longer-term regulation of pyruvate dehydrogenase kinase in rat soleus muscle. Biochim. Biophys. Acta 1135: 201–206.

    Article  PubMed  CAS  Google Scholar 

  • Storlien, L.H., James, D.E., Burleigh, K.M., Chisholm, D.J. and Kraegen, E.W. (1986) Fat feeding causes widespread in vivo insulin resistance, decreased energy expenditure, and obesity in rats. Am. J. Physiol. 251: E576–E583.

    PubMed  CAS  Google Scholar 

  • Storlien, L.H., Kraegen, E.W., Chisholm, D.J., Ford, G.L., Bruce, D.G. and Pascoe, W.S. (1987) Fish oil prevents insulin resistance induced by high-fat feeding in rats. Science 237: 885–888.

    Article  PubMed  CAS  Google Scholar 

  • Sugden, P.H., Hutson, N.J., Kerbey, A.L. and Randle, P.J. (1978) Phosphorylation of additional sites on pyruvate dehydrogenase inhibits its reactivation by pyruvate dehydrogenase phosphate phosphatase. Biochem. J. 169: 433–435.

    PubMed  CAS  Google Scholar 

  • Sugden, M.C., Holness, M.J. and Palmer, T.N. (1989) Fuel selection and carbon fluxes during the starved-to-fed transition. Biochem. J. 263: 313–323.

    PubMed  CAS  Google Scholar 

  • Sugden, M.C., Howard, R.M. and Holness, M.J. (1992) Variations in hepatic carbon flux during unrestricted feeding. Biochem. J. 284: 721–724.

    PubMed  CAS  Google Scholar 

  • Sugden, M.C. and Holness, M.J. (1993a) Physiological modulation of the uptake and fate of glucose in brown adipose tissue. Biochem. J. 295: 171–176.

    PubMed  CAS  Google Scholar 

  • Sugden, M.C. and Holness, M.J. (1993b) Control of muscle pyruvate oxidation during late pregnancy. FEBS Lett. 321: 121–126.

    Article  PubMed  CAS  Google Scholar 

  • Sugden, M.C., Grimshaw, R.M. and Holness, M.J. (1993a) The regulation of hepatic carbon flux by pyruvate dehydrogenase and pyruvate dehydrogenase kinase during long-term food restriction. Biochem. J. 296: 217–223.

    PubMed  CAS  Google Scholar 

  • Sugden, M.C., Howard, R.M., Munday, M.R. and Holness, M.J. (1993b) Mechanisms involved in the co-ordinate regulation of strategic enzymes of glucose metabolism. Adv. Enz. Regul. 33: 71–95.

    Article  CAS  Google Scholar 

  • Sugden, M.C. and Holness, M.J. (1994) Interactive regulation of the pyruvate dehydrogenase complex and the carnitine palmitoyltransferase system. FASEB J. 8: 54–61.

    PubMed  CAS  Google Scholar 

  • Sugden, M.C. and Holness, M.J. (1995) Mechanisms underlying suppression of glucose oxidation in insulin-resistant states. Biochem. Soc. Trans. 23: 314–320.

    PubMed  CAS  Google Scholar 

  • Sugden, M.C., Orfali, K.A. and Holness, M.J. (1995) The pyruvate dehydrogenase complex: nutrient control and the pathogenesis of insulin resistance. J. Nutrition 125: 17469–17529.

    Google Scholar 

  • Thomas, A.P., Diggle, T.A. and Denton, R.M. (1986) Sensitivity of pyruvate dehydrogenase phosphate phosphatase to magnesium ions. Similar effects of spermine and insulin. Biochem. J. 238: 83–91.

    PubMed  CAS  Google Scholar 

  • Virkamaki, A., Puhaikainen, I., Nuijhan, N., Gerich, J.E. and Yki-Jarvinen, H. (1990) Measurement of lactate formation from glucose using [6-3H] and [6-14C]glucose in humans. Am. J. Physiol. 259: E397–E404.

    PubMed  CAS  Google Scholar 

  • Yeaman, S.J. (1989) The 2-oxo acid dehydrogenases: recent advances. Biochem. J. 251: 625–632.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Sugden, M.C., Holness, M.J. (1996). Hormonal and nutritional modulation of PDHC activity status. In: Patel, M.S., Roche, T.E., Harris, R.A. (eds) Alpha-Keto Acid Dehydrogenase Complexes. MCBU Molecular and Cell Biology Updates. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8981-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8981-0_12

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9853-9

  • Online ISBN: 978-3-0348-8981-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics