Suggestions for Further Reading

Part of the Progress in Mathematics book series (PM, volume 157)


In [Iw], Iwaniec considers a weighted sum
$$ \sum\limits_{D} {{\mu ^{2}}\left( D \right){{L'}_{D}}\left( {1,f} \right)F\left( {D/Y} \right)}$$
where F is a smooth function, compactly supported in ℝ+ with positive mean value. He establishes an asymptotic formula for it of the form
$$ \alpha Y{\text{ }}\log Y{\text{ }} + {\text{ }}\beta Y{\text{ }} + {\text{ }}0({Y^{\tfrac{{13}}{{14}} + \varepsilon }})$$
with some constants α ≠ 0 and β which depend on f and the test function F.


Dirichlet Character Automorphic Representation Cuspidal Automorphic Representation Critical Strip Fundamental Discriminant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AG]
    A. Ash and D. Ginzburg, p-adic L-functions for GL(2n), Invent. Math., 116(1994), 27–73.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [BFS]
    S. Böcherer, M. Furusawa and R. Schulze-Pillot, On Whittaker coefficients of some metaplectic forms, Duke Math. J., 76(1994), 761–772.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [BR]
    L. Barthel and D. Ramakrishnan, A nonvanishing result for twists of L-functions of GL(n), Duke Math. J., 74(1994), 681–700.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [FH]
    S. Friedberg and J. Hoffstein, Non-vanishing theorems for automorphic L-functions on GL(2), Annals of Math., 142 (1995) pp. 385–423.MathSciNetzbMATHGoogle Scholar
  5. [GV]
    D. Goldfeld and C. Viola, Mean values of L-functions associated to elliptic, Fermat, and other curves at the center of the critical strip, Journal of Number Theory, 11 (1979) pp. 305–320.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [HR]
    J. Hoffstein and D. Ramakrishnan, Siegel zeros and cusp forms, Int. Math. Res. Not., 1995, pp. 279–308.Google Scholar
  7. [Iw]
    H. Iwaniec, On the order of vanishing of modular L-functions at the critical point, Séminaire de Théorie des Nombres, Bordeaux, 2 (1990) pp. 365–376.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [LRS]
    W. Luo, Z. Rudnick and P. Sarnak, On Selberg’s eigenvalue conjecture, Geom. and Func. Anal., 5 (1995), 387–401.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [Me]
    L. Merel, private communication, 1995.Google Scholar
  10. [Mu]
    R. Murty, A motivated introduction to the Langlands program, in Advances in Number Theory, (eds. F. Gouvea and N. Yui), Oxford University Press, 1994.Google Scholar
  11. [MS]
    V. Kumar Murty and T. Stefanicki, Non-vanishing of quadratic twists of L-functions attached to automorphic representations of GL(2) over ℚ, preprint, 1994.Google Scholar
  12. [PP]
    A. Perelli and J. Pomykala, Averages of twisted L-functions, to appear in Acta Arithmetica. Google Scholar
  13. [PS]
    I. Piatetski-Shapiro, The work of Waldspurger, in Springer Lecture Notes, 1041 pp. 280–302.Google Scholar
  14. [R1]
    D. Rohrlich, Non-vanishing of L-functions for GL(2), Inventiones Math., 97 (1989) pp. 381–403.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [R2]
    D. Rohrlich, Non-vanishing of L-functions and the structure of Mordell-Weil groups, J. reine angew. Math., 417 (1991) pp. 1–26.MathSciNetzbMATHGoogle Scholar
  16. [St]
    T. Stefanicki, Non-vanishing of L-functions attached to automorphic representations of GL(2), Ph.D. Thesis, McGill University, 1992.Google Scholar
  17. [Z]
    Y. Zhang, Some analytic properties of automorphic L-functions, Ph.D. Thesis, McGill University, 1994.Google Scholar

Copyright information

© Springer Basel AG 1997

Authors and Affiliations

  1. 1.Department of MathematicsQueen’s UniversityKingstonCanada
  2. 2.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations