Selberg’s Conjectures

Part of the Progress in Mathematics book series (PM, volume 157)


In a fundamental paper [S], Selberg defined a general class of Dirichlet series and formulated basic conjectures concerning them. Selberg’s conjectures concern Dirichlet series, which admit analytic continuations, Euler products and functional equations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    E. Artin, Collected papers, Springer-Verlag, New York-Berlin, 1982.zbMATHGoogle Scholar
  2. [B]
    S. Bochner, On Riemann’s functional equation with multiple gamma factors, Annals of Mathematics, 67 (1958) 29–41.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [CG]
    B. Conrey and A. Ghosh, On the Selberg class of Dirichlet series, Duke Math. Journal, 72 No. 3, (1993) 673–693.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [JS]
    H. Jacquet and J.A. Shalika, A non-vanishing theorem for zeta functions of GL n, Inventiones Math., 38 (1976) p. 1–16.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [M]
    M. Ram Murty, A motivated introduction to the Langlands program, in Advances in Number Theory (eds. F. Gouvea and N. Yui), pp. 37–66, Clarendon Press, Oxford, 1993.Google Scholar
  6. [M1]
    M. Ram Murty, Selberg’s conjectures and Artin L-functions, Bulletin of the Amer. Math. Soc., 31 (1) (1994) p. 1–14.CrossRefzbMATHGoogle Scholar
  7. [MM]
    M. Ram Murty and V. Kumar Murty, Strong multiplicity one for Selberg’s class, C.R. Acad. Sci. Paris, 319 (Series I) (1994) p. 315–320.zbMATHGoogle Scholar
  8. [Mu]
    M. Ram Murty, Selberg conjectures and Artin L-functions, II, in Current Trends in Mathematics and Physics, A tribute to Harish-Chandra, (edited by S. D. Adhikari), Narosa Publishing House, 1995.Google Scholar
  9. [S]
    A. Selberg, Old and new conjectures and results about a class of Dirichlet series, Collected Papers, Volume II, pp. 47–63, Springer-Verlag.Google Scholar
  10. [V]
    M.F. Vignéras, Facteurs gamma et équations fonctionelles, Lecture notes in mathematics, 627 Springer-Verlag, Berlin-New York, 1976.Google Scholar

Copyright information

© Springer Basel AG 1997

Authors and Affiliations

  1. 1.Department of MathematicsQueen’s UniversityKingstonCanada
  2. 2.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations