Skip to main content

Inequalities for the first eigenvalues of the clamped plate and buckling problems

  • Conference paper

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 123))

Abstract

In 1877 Rayleigh conjectured that the lowest frequency of vibration of a clamped plate of given area occurs when the plate is circular. This conjecture was finally proved by Nadirashvili in 1992, with important earlier contributions due to Szegő and Talenti. An analogous conjecture concerning the critical buckling load of a clamped plate was made by Pólya and Szegő around 1950. This conjecture remains open. This paper surveys the state of our knowledge of these and related problems, including their n-dimensional generalizations. In particular, we discuss our recent work proving Rayleigh’s clamped plate conjecture for dimension 3 (and 2) and proving related, but presumably nonoptimal, inequalities for the clamped plate problem for dimension n ≥ 4 and for the buckling problem. In the latter cases, the inequalities have the form of the conjectured lower bounds but contain an unwanted factor slightly less than 1. Our bounds for the clamped plate problem follow from detailed analysis involving Bessel functions, and compare favorably to earlier bounds of a similar form due to Talenti. Our bounds for the buckling problem follow by similar methods, and also from earlier bounds due to Payne and Krahn, as first noted by Bramble and Payne.

Partially supported by National Science Foundation (USA) grants DMS-9114162, INT-123481, and DMS-9500968.

Partially supported by Fondecyt (Chile) projects 193-0561 and 196-0462 and Conicyt (Chile).

Partially supported by National Science Foundation (USA) grants DMS-9414149 and DMS-9304580.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abramowitz and I.A. Stegun, editors, Handbook of Mathematical Functions. National Bureau of Standards Applied Mathematics Series, vol. 55, U.S. Government Printing Office, Washington, D.C., 1964.

    MATH  Google Scholar 

  2. R.A. Adams, Sobolev Spaces. Academic Press, New York, 1975.

    MATH  Google Scholar 

  3. M.S. Ashbaugh and R.D. Benguria, On Rayleigh’s conjecture for the clamped plate and its generalization to three dimensions. Duke Math. J. 78 (1995), 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  4. M.S. Ashbaugh and R.S. Laugesen, Fundamental tones and buckling loads of clamped plates. Ann. Scuola Norm. Sup. Pisa CI. Sci., Ser. IV. To appear.

    Google Scholar 

  5. R. Askey, editor, Gabor Szegő: Collected Papers, Volume 3: 1945–1972, Birkhäuser, Boston, 1982.

    Google Scholar 

  6. C. Bandle, Isoperimetric Inequalities and Applications. Pitman Monographs and Studies in Mathematics, vol. 7, Pitman, Boston, 1980.

    Google Scholar 

  7. J.H. Bramble and L.E. Payne, Pointwise bounds in the first biharmonic boundary value problem. J. Math, and Phys. 42 (1963), 278–286.

    MathSciNet  Google Scholar 

  8. C.V. Coffman, On the structure of solutions to Δ2 u = λu which satisfy the clamped plate conditions on a right angle. SIAM J. Math. Anal. 13 (1982), 746–757.

    Article  MathSciNet  MATH  Google Scholar 

  9. C.V. Coffman and R.J. Duffin, On the fundamental eigenfunctions of a clamped punctured disk. Adv. Appl. Math. 13 (1992), 142–151.

    MathSciNet  MATH  Google Scholar 

  10. C.V. Coffman, R.J. Duffin, and D.H. Shaffer, The fundamental mode of vibration of a clamped annular plate is not of one sign. In: “Constructive Approaches to Mathematical Models”, C.V. Coffman and G.J. Fix, editors, Academic Press, New York, 1979, pp. 267–277.

    Google Scholar 

  11. R.J. Duffin, Nodal lines of a vibrating plate. J. Math, and Phys. 31 (1953), 294–299.

    MathSciNet  MATH  Google Scholar 

  12. R.J. Duffin, Some problems of mathematics and science. Bull. Amer. Math. Soc. 80 (1974), 1053–1070 [an expanded version of this article also appeared under the title Some Problems Arising from Mathematical Model as pp. 3–32 of “Constructive Approaches to Mathematical Models” (see reference [10] above for full bibliographic information)].

    Article  MathSciNet  MATH  Google Scholar 

  13. R.J. Duffin and D.H. Shaffer, On the modes of vibration of a ring-shaped plate. Bull. Amer. Math. Soc. 58 (1952), 652.

    Google Scholar 

  14. G. Faber, Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt. Sitzungberichte der mathematisch-physikalischen Klasse der Bayerischen Akademie der Wissenschaften zu München Jahrgang, 1923, pp. 169–172.

    Google Scholar 

  15. S.H. Gould, Variational Methods for Eigenvalue Problems: An Introduction to the Weinstein Method of Intermediate Problems, second edition, revised and enlarged, University of Toronto Press (Mathematical Expositions, Number 10), Toronto, 1966 (see pp. 135–137 in particular).

    MATH  Google Scholar 

  16. G.H. Hardy, J.E. Littlewood, and G. Pólya, Inequalities, second edition, Cambridge University Press, Cambridge, 1952.

    MATH  Google Scholar 

  17. V.A. Kozlov, V.A. Kondrat’ev, and V.G. Maz’ya, On sign variation and the absence of “strong” zeros of solutions of elliptic equations. Izv. Akad. Nauk SSSR, Ser. Mat. 53 (1989), 328–344 (in Russian) [English translation in Math. USSR-Izv. 34 (1990), 337–353].

    Google Scholar 

  18. E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises. Math. Ann. 94 (1925), 97–100.

    Article  MathSciNet  MATH  Google Scholar 

  19. E. Krahn, Über Minimaleigenschaften der Kugel in drei und mehr Dimensionen. Acta Comm. Univ. Tartu (Dorpat) A9 (1926), 1–44 [English translation in Edgar Krahn 1894–1961: A Centenary Volume, Ü. Lumiste and J. Peetre, editors, IOS Press, Amsterdam, 1994, pp. 139–174].

    Google Scholar 

  20. A.W. Leissa, Vibration of Plates. National Aeronautics and Space Administration (NASA SP-160), U.S. Government Printing Office, Washington, D.C., 1969.

    Google Scholar 

  21. L. Lorch, Monotonicity of the zeros of a cross product of Bessel functions. Methods and Appls. of Anal. 1 (1994), 75–80.

    MathSciNet  MATH  Google Scholar 

  22. E. Mohr, Über die Rayleighsche Vermutung: Unter allen Platten von gegebener Fläche und konstanter Dichte und Elastizität hat die kreisförmige den tiefsten Grundton. Ann. Mat. Pura Appl. (Ser. 4) 104 (1975), 85–122.

    Article  MathSciNet  MATH  Google Scholar 

  23. N.S. Nadirashvili, An isoperimetric inequality for the principal frequency of a clamped plate. Dokl. Akad. Nauk 332 (1993), 436–439 (in Russian) [English translation in Phys. Dokl. 38 (1993), 419–421].

    MathSciNet  Google Scholar 

  24. N.S. Nadirashvili, New isoperimetric inequalities in mathematical physics. In: “Partial Differential Equations of Elliptic Type”, Cortona, 1992, A. Alvino, E. Fabes, and G. Talenti, editors, Cambridge University Press (Symposia Mathematica, vol. 35), Cambridge, 1994, pp. 197–203.

    Google Scholar 

  25. N.S. Nadirashvili, Rayleigh’s conjecture on the principal frequency of the clamped plate. Arch. Rational Mech. Anal. 129 (1995), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  26. L.E. Payne, Inequalities for eigenvalues of membranes and plates. J. Rational Mech. Anal. 4 (1955), 517–529.

    MathSciNet  MATH  Google Scholar 

  27. L.E. Payne, Isoperimetric inequalities for eigenvalues and their applications. Autovalori e autosoluzioni, Centro Internazionale Matematico Estivo (C.I.M.E.) 2° Ciclo, Chieti, 1962, pp. 1–58.

    Google Scholar 

  28. L.E. Payne, Isoperimetric inequalities and their applications. SIAM Review 9 (1967), 453–488.

    Article  MathSciNet  MATH  Google Scholar 

  29. G. Pólya, On the characteristic frequencies of a symmetric membrane. Math. Z. 63 (1955), 331–337.

    Article  MathSciNet  MATH  Google Scholar 

  30. G. Pólya and G. Szegő, Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies, Number 27, Princeton University Press, Princeton, 1951.

    MATH  Google Scholar 

  31. J.W.S. Rayleigh, The Theory of Sound, second edition revised and enlarged (in 2 volumes), Dover Publications, New York, 1945 (republication of the 1894/96 edition).

    MATH  Google Scholar 

  32. G. Szegő, On membranes and plates. Proc. Nat. Acad. Sci. 36 (1950), 210–216 [reprinted as pp. 187–193 of [5] with comments by R. Askey on p. 194; see also [34] for corrections to Sections III and IV].

    Article  MathSciNet  Google Scholar 

  33. G. Szegő, On the vibrations of a clamped plate. Atti del Quarto Congresso dell’Unione Matematica Italiana, Taormina, 25–31 Ott., 1951, vol. II, Casa Editrice Perrella, Roma, 1953, pp. 573–577 [reprinted as pp. 311–315 of [5] with comments by R. Askey on p. 316].

    Google Scholar 

  34. G. Szegő, Note to my paper “On membranes and plates”. Proc. Nat. Acad. Sci. 44 (1958), 314–316 [reprinted as pp. 481–483 of [5]].

    Article  MathSciNet  Google Scholar 

  35. G. Talenti, On the first eigenvalue of the clamped plate. Ann. Mat. Pura Appl. (Ser. 4) 129 (1981), 265–280.

    Article  MathSciNet  MATH  Google Scholar 

  36. S. Timoshenko and J.M. Gere, Theory of Elastic Stability, second edition, McGraw-Hill, New York, 1961.

    Google Scholar 

  37. A. Weinstein, Études des spectres des équations aux dérivées partielles de la théorie des plaques élastiques. Mémorial des Sciences Mathématiques 88, Paris, 1937.

    Google Scholar 

  38. A. Weinstein and W. Stenger, Methods of Intermediate Problems for Eigenvalues: Theory and Ramifications. Academic Press, New York, 1972.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Basel AG

About this paper

Cite this paper

Ashbaugh, M.S., Benguria, R.D., Laugesen, R.S. (1997). Inequalities for the first eigenvalues of the clamped plate and buckling problems. In: Bandle, C., Everitt, W.N., Losonczi, L., Walter, W. (eds) General Inequalities 7. ISNM International Series of Numerical Mathematics, vol 123. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8942-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8942-1_9

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9837-9

  • Online ISBN: 978-3-0348-8942-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics