Skip to main content

Computer Graphics and the Eigenfunctions for the Koch Snowflake Drum

  • Conference paper
Progress in Inverse Spectral Geometry

Part of the book series: Trends in Mathematics ((TM))

Abstract

Using techniques from numerical analysis, we have approximated — jointly with J. W. Neuberger and R. J. Renka — the smallest 50 eigenvalues, along with their associated eigenfunctions, of the Dirichlet Laplacian on the Koch snowflake domain. Physically, these correspond to the frequencies, and the associated normal modes, of the Koch snowflake drum. Several graphical representations of these eigenfunctions, as well as the magnitudes of their gradients, have been produced using Cray supercomputers and Silicon Graphics machines. We briefly describe here the numerical methods used in the computations and present pictures of a selected set of the eigenfunctions. We also compare the graphical images of the boundary behavior (of the magnitude) of the gradient with the known mathematical results (of Lapidus and Pang). This work is partly motivated by the physical experiments of Sapoval et al. related to the formation of fractal structures.

Research partially supported by the National Science Foundation under grant DMS-9207098 as well as by a grant from the University of California at San Diego’s Supercomputer Center.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.E. Atkinson, An Introduction to Numerical Analysis, 2nd ed., John Wiley and Sons, New York, 1989.

    MATH  Google Scholar 

  2. M.T. Barlow and E.A. Perkins, Brownian motion on the Sierpinski gasket, Prob. Th. Rel. Fields 79 (1988), 542–624.

    Article  MathSciNet  Google Scholar 

  3. P. Bérard, Spectres et groupes cristallographiques I: Domaines euclidiens, Invent. Math. 58 (1980), 179–199.

    Article  MathSciNet  MATH  Google Scholar 

  4. M.V. Berry, Distribution of modes in fractal resonators, in «Structural Stability in Physics», (W. Giittinger and H. Eikemeier, eds.), 1979, Springer-Verlag, Berlin, pp. 51–53.

    Chapter  Google Scholar 

  5. M.V. Berry, Some geometric aspects of wave motion: wavefront dislocations,diffraction catastrophes, in «Geometry of the Laplace Operator», Proc. Sympos. Pure Math. 36 (1980), Amer. Math. Soc., Providence, pp. 13–38.

    Google Scholar 

  6. J. Brossard and R. Carmona, Can one hear the dimension of a fractal?, Commun. Math. Phys. 104 (1986), 103–122.

    Article  MathSciNet  MATH  Google Scholar 

  7. W.D. Evans and D.J. Harris, Fractals, trees and the Neumann Laplacian, Math. Ann. 296 (1993), 493–527.

    Article  MathSciNet  MATH  Google Scholar 

  8. K.J. Falconer, Fractal Geometry: Mathematical foundations and applications, Wiley, Chichester, 1990.

    Google Scholar 

  9. J. Fleckinger-Pellé and D.G. Vassiliev, An example of a two-term asymptotics for the «counting function» of a fractal drum, Trans. Amer. Math. Soc. 337 (1993), 99–116.

    MathSciNet  MATH  Google Scholar 

  10. G.H. Golub and C.F. Van Loan, Matrix Computations, 2nd ed., Johns Hopkins Univ. Press, Baltimore, 1989.

    MATH  Google Scholar 

  11. C.Q. He and M.L. Lapidus, Generalized Minkowski content, spectrum of fractal drums, fractal strings and the Riemann zeta function, preprint, IHES M/95/47, Institut des Hautes Scientifiques, Bures-sur-Yvette, France. (To appear in the Memoirs of the American Mathematical Society.)

    Google Scholar 

  12. E. Isaacson and H. Keller, Analysis of Numerical Methods, John Wiley, New York, 1966.

    MATH  Google Scholar 

  13. J. Kigami, Harmonic calculus on p.c.f. self-similar sets, Trans. Amer. Math. Soc. 335 (1993), 721–755.

    MathSciNet  MATH  Google Scholar 

  14. J. Kigami and M.L. Lapidus, Weyl’s problem for the spectral distribution of Laplacians on p. c. f self-similar fractals, Commun. Math. Physics 158 (1993), 93–125.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Kudrolli and S. Sridhar, Signatures of chaos in quantum billiards: microwave experiments, Phys. Rev. E 49, No. 11 (1994), R11–R14.

    Article  Google Scholar 

  16. M.L. Lapidus, Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture, Trans. Amer. Math. Soc. 325 (1991), 465–529.

    Article  MathSciNet  MATH  Google Scholar 

  17. M.L. Lapidus, Vibrations of fractal drums, the Riemann hypothesis,waves in fractal media, and the Weyl-Berry conjecture, in «Ordinary and Partial Differential Equations», vol. IV, (B.D. Sleeman and R.J. Jarvis, eds.), Pitman Research Notes in Math. Series 289 (1993), Longman, London, pp. 126–209.

    Google Scholar 

  18. M.L. Lapidus, Analysis on fractals, Laplacians on self-similar sets,noncom-mutative geometry and spectral dimensions, Topological Methods in Nonlinear Analysis 4 (1994), 137–195.

    MathSciNet  MATH  Google Scholar 

  19. M.L. Lapidus and H. Maier, The Riemann hypothesis and inverse spectral problems for fractal strings, Journal London Math. Soc. (2) 52, No. 1 (1995), 15–34.

    Article  MathSciNet  Google Scholar 

  20. M.L. Lapidus, J.W. Neuberger, R.J. Renka, and C.A. Griffith, Snowflake Harmonics and Computer Graphics: Numerical Computation of Spectra on Fractal Drums, Intern. Journal of Bifurcation and Chaos 6, No. 8 (1996) (in press) (preprint, IHES M/95/96, 1995).

    Google Scholar 

  21. M.L. Lapidus and M.M.H. Pang, Eigenfunctions of the Koch snowflake domain, Commun. Math. Physics 172, No. 2 (1995), 359–376.

    Article  MathSciNet  MATH  Google Scholar 

  22. M.L. Lapidus and C. Pomerance, The Riemann zeta function and the one-dimensional Weyl-Berry conjecture for fractal drums, Proc. London Math. Soc. (3) 66, No. 1 (1993), 41–69.

    Article  MathSciNet  Google Scholar 

  23. M.L. Lapidus and C. Pomerance, Counterexamples to the modified Weyl-Berry conjecture on fractal drums, Math. Proc. Cambridge Soc. 119, No. 1 (1996), 167–178.

    Article  MathSciNet  MATH  Google Scholar 

  24. B.B. Mandelbrot, The Fractal Geometry of Nature, rev. and enl. ed., Freeman, New York, 1983.

    Google Scholar 

  25. J.W. Neuberger and D. Noid, Numerical calculation of eigenvalues for the Schrödinger equation III,J. Comp. Chem. 8 (1987), 459–461.

    Article  Google Scholar 

  26. M.A. Pinsky, The eigenvalues of an equilateral triangle, SIAM J. Math. Anal. 11 (1980), 819–827.

    Article  MathSciNet  MATH  Google Scholar 

  27. B. Sapoval, Experimental observation of local modes in fractal drums, Physica D 38 (1989), 296–298.

    Article  Google Scholar 

  28. B. Sapoval, Fractals, Aditech, Paris, 1990.

    Google Scholar 

  29. B. Sapoval and Th. Gobron, Vibrations of strongly irregular or fractal resonators, Phys. Rev. E (3) 47, No. 5 (1993), 3013–3024.

    Article  Google Scholar 

  30. B. Sapoval, Th. Gobron, and A. Margolina, Vibrations offractal drums, Phys. Rev. Lett. 67 (1991), 2974–2977.

    Article  Google Scholar 

  31. S. Sridhar, D. Hogenboom, and A. Kudrolli, Experimental eigenvalue spectra of «rough» and multiply-connected billiards,in «Quantum Dynamics of Chaotic Systems», (J.M. Yuan, D.H. Feng, G.M. Zaslaysky, eds.), Gordon and Breach, Amsterdam, 1993, pp. 297–304.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Basel AG

About this paper

Cite this paper

Griffith, C.A., Lapidus, M.L. (1997). Computer Graphics and the Eigenfunctions for the Koch Snowflake Drum. In: Andersson, S.I., Lapidus, M.L. (eds) Progress in Inverse Spectral Geometry. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8938-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8938-4_7

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9835-5

  • Online ISBN: 978-3-0348-8938-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics