Skip to main content

DNA Methylation Changes in Lung Cancer

  • Chapter
  • 86 Accesses

Part of the book series: Respiratory Pharmacology and Pharmacotherapy ((RPP))

Summary

Recent evidence has suggested a role for DNA methylation changes and for DNA (cytosine 5-) methyltransferase in some aspect of tumor development. Limited data are currently available related to changes in the methylation process in lung cancer. Using a novel two-dimensional genome scanning approach to detect gene dosage alterations in tumors, we have identified loci that exhibited hypermethylation and others that exhibited hypomethylation in lung adenocarcinoma. The data suggest that some of the methylation changes observed are unlikely to be due to methylation errors. Full implementation of the genome scanning approach will probably uncover a large number of loci affected by methylation change in lung carcinogenesis.

Author for correspondence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams RLP, Burdon RH (1985) DNA methylation in the cell In: Rich A (ed): Molecular Biology of DNA Methylation, Springer-Verlag, New York, pp 9–18.

    Chapter  Google Scholar 

  2. Antequera F, Bird A (1993) CpG islands. In: Jost JP, Saluz HP (eds): DNA Methylation: Molecular Biology and Biological Significance, Birkhäuser Verlag, Basel, pp 169–185.

    Google Scholar 

  3. Yeivin A, Razin A (1993) Gene methylation patterns and expression. In: Jost JP, Haluz HP (eds): DNA Methylation: Molecular Biology and Biological Significance. Birkhäuser Verlag, Basel, pp 523–568.

    Google Scholar 

  4. Antequera F, Bird A (1993) Number of CpG islands and genes in the human and mouse. Proc Natl Acad Sci USA 90: 11995–11999.

    Article  PubMed  CAS  Google Scholar 

  5. Bestor T, Laudano A, Mattaliano R, Ingram V (1988) Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. J Molec Biol 203: 971–983.

    Article  PubMed  CAS  Google Scholar 

  6. Adams RLP, Burdon RH (1985) S-Adenosyl-L-methionine — donor of methyl groups. In: Razin A, Cedar H, Riggs AD (eds): Molecular Biology of DNA Methylation. Springer-Verlag, New York, pp 31–41.

    Chapter  Google Scholar 

  7. Stein WD (1980) The epigenetic address: A model for embryological development. Journal of Theoretical Biology 82: 663–677.

    Article  PubMed  CAS  Google Scholar 

  8. Adams RLP, Lindsay H, Reale A, Seivwright C, Kass S, Cummings M et al. (1993) Regulation of de novo methylation. In: Jost JP, Saluz HP (eds): DNA Methylation: Molecular Biology and Biological Significance. Birkhäuser Verlag, Basel, pp 487–509.

    Google Scholar 

  9. Issa J-PJ, Ottaviano YL, Celano P, Hamilton SR, Davidson NE, Baylin SB (1994) Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nature Genetics 7: 536–540.

    Article  PubMed  CAS  Google Scholar 

  10. Watanabe S, Kawai J, Hirotsune S, Suzuki H, Hirose K, Taga C, Ozawa N, Fushiki S, Hayashizaki Y (1995) Accessibility to tissue-specific genes from methylation profiles of mouse brain genomic DNA. Electrophoresis 16: 218–226.

    Article  PubMed  CAS  Google Scholar 

  11. Spruck CH, Rideout WM, Jones PA (1993) DNA methylation and cancer. In: Jost JP, Saluz HP (eds): DNA Methylation: Molecular Biology and Biological Significance. Birkhäuser Verlag, Basel, pp 487–509.

    Google Scholar 

  12. Laird PW, Jaenisch R (1994) DNA methylation and cancer. Hum Molec Genet 3: 1487–1495.

    PubMed  CAS  Google Scholar 

  13. Counts JL, Goodman JI (1995) Alterations in DNA methylation may play a variety of roles in carcinogenesis. Cell 83: 13–15.

    Article  PubMed  CAS  Google Scholar 

  14. Yebra MJ, Bhagwat AS (1995) Role of cytosine methyltransferases in causing C to T mutations. Biochem 34: 14752–14757.

    Article  CAS  Google Scholar 

  15. Breit TM, Wolvers-Tettero ILM, van Dongen JJM (1994) Lineage specific demethylation of tal-l gene breakpoint region determines the frequency of tal-l deletion in aβ lineage T cells. Oncogene 9: 1847–1853.

    PubMed  CAS  Google Scholar 

  16. Pogribny IP, Basnakian AG, Miller BJ, Lopatina NG, Poirier LA, James SJ (1995) Breaks in genomic DNA and within the p53 gene are associated with hypomethylation in livers of folate/methyl-deficient rats. Cancer Res 55: 1894–1901.

    PubMed  CAS  Google Scholar 

  17. Ottaviano YL, Issa J-PJ, Pari FF, Smith HS, Baylin SB, Davidson NE (1994) Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res 54: 2552–2555.

    PubMed  CAS  Google Scholar 

  18. Millikin D, Meese E, Vogelstein B, Witkowski C, Trent J (1991) Loss of heterozygosity for loci on the long arm of chromosome 6 in human malignant melanoma. Cancer Res 51: 5449–5453.

    PubMed  CAS  Google Scholar 

  19. Issa J-PJ, Zehnbauer BA, Civin CI, Collector MI, Sharkis SJ, Davidson NE, Kaufmann SH, Baylin SB (1996) The estrogen receptor CpG island is methylated in most hematopoietic neoplasms. Cancer Res 56: 911–913.

    Google Scholar 

  20. Issa J-PJ, Baylin SB, Belinsky SA (1996) Methylation of the estrogen receptor CpG island in lung tumors is related to the specific type of carcinogen exposure. Cancer Res 56: 3655–3658.

    PubMed  CAS  Google Scholar 

  21. Laird PW, Jackson-Grusby L, Fazeli A, Dickinson SL, Jung WE, Li E, Weinberg RA, Jaenisch R (1995) Suppression of intestinal neoplasia by DNA hypomethylation. Cell 81: 197–205.

    Article  PubMed  CAS  Google Scholar 

  22. Wu J, Issa J-PJ, Herman J, Basset Jr. DE, Nelin BD, Baylin SB (1993) Expression of an exogenous eukaryotic DNA methyltransferase gene induces transformation of NIH 3T3 cells. Proc Natl Acad Sci USA 90: 8891–8895.

    Article  PubMed  CAS  Google Scholar 

  23. Belinsky SA, Nikula KJ, Baylin SB, Issa J-PJ (1996) Increased cytosine DNA-methyl-transferase activity is target-cell-specific and an early event in lung cancer. Proc Natl Acad Sci USA 93: 4045–4050.

    Article  PubMed  CAS  Google Scholar 

  24. Lee PJ, Washer LL, Law DJ, Boland CR, Horon IL, Feinberg AP (1996) Limited up-regulation of DNA methyltransferase in human colon cancer reflecting increased cell proliferation. Proc Nat Acad Sci USA 93: 10366–10370.

    Article  PubMed  CAS  Google Scholar 

  25. Triboli C, Tamanini F, Patrosso C, Milanesi L, Villa A, Pergolizzi R, Maestrini E, Rivella S, Blone S, Mancini M, et al. (1992) Methylation and sequence analysis around Eagi sites: Identification of 28 new CpG islands in XQ24-XQ28. Nucl Acids Res 20: 727–733.

    Article  Google Scholar 

  26. Stein R, Razin A, Cedar H (1982) In vitro methylation of the hamster adenine phosphoribo-syltransferase gene inhibits its expression in mouse L cells. Proc Natl Acad Sci USA 79: 3418–3422.

    Article  PubMed  CAS  Google Scholar 

  27. Skolnick MM, Sternberg SR, Neel JV (1982) Computer programs for adapting two-dimensional gels to the study of mutation. Clin Chem 28: 969–978.

    PubMed  CAS  Google Scholar 

  28. Skolnick MM, Neel JV (1986) An algorithm for comparing two-dimensional electrophoretic gels, with particular reference to the study of mutation. In: Harris H, Hirschhorn K (eds): Advances in Human Genetics. Plenum Press, New York, pp 55–160.

    Chapter  Google Scholar 

  29. Kuick R, Skolnick MM, Neel JV, Hanash SM (1991) An automatic spot matching algorithm for two-dimensional electrophoresis. Electrophoresis 12: 736–746.

    Article  PubMed  CAS  Google Scholar 

  30. Hatada I, Hayashizaki Y, Hirotsune S, Komatsubara H (1991) A genomic scanning method for higher organisms using restriction sites as landmarks. Proc Natl Acad Sci USA 88: 9523–9527.

    Article  PubMed  CAS  Google Scholar 

  31. Asakawa J, Kuick R, Neel JV, Kodaira M, Satoh C, Hanash SM (1994) Genetic variation detected by quantitative analysis of end-labeled genomic DNA fragments. Proc Natl Acad Sci USA 91: 9052–9056.

    Article  PubMed  CAS  Google Scholar 

  32. Kuick R, Asakawa J, Neel JV, Satoh C, Hanash SM (1995) High yield of restriction fragment length polymorphisms in two-dimensional separations of human genomic DNA. Genomics 25: 345–353.

    Article  PubMed  CAS  Google Scholar 

  33. Larsen F, Gundersen G, Lopez R, Prydz H (1992) CpG islands as gene markers in the human genome. Genomics 13: 1095–1107.

    Article  PubMed  CAS  Google Scholar 

  34. Lindsay S, Bird AP (1987) Use of restriction enzymes to detect potential gene sequences in mammalian DNA. Nature 327: 336–338.

    Article  PubMed  CAS  Google Scholar 

  35. Asakawa J, Kuick R, Neel JV, Kodaira M, Satoh C, Hanash SM (1995) Quantitative and qualitative genetic variation in two-dimensional DNA gels of human lymphocytoid cell lines. Electrophoresis 16: 241–252.

    Article  PubMed  CAS  Google Scholar 

  36. Thoraval D, Asakawa J, Kodaira M, Chang C, Radany E, Kuick R, Lamb B, Richardson B, Neel JV, Glover T et al. (1996) A methylated human 9 Kb repetitive sequence on acrocentric chromosomes is homologous to a subtelomeric repeat in chimpanzee. Proc Natl Acad Sci USA 93: 4442–4447.

    Article  PubMed  CAS  Google Scholar 

  37. Miwa W, Yashima K, Sekine T, Sekiya T (1995) Demethylation of a repetitive DNA sequence in human cancers. Electrophoresis 16: 227–232.

    Article  PubMed  CAS  Google Scholar 

  38. Thoraval DH, Asakawa J-I, Wimmer K, Kuick R, Lamb B, Richardson B, Ambros P, Glover T, Hanash S, et al. (1996) Demethylation of repetitive DNA sequences in neuro-blastoma. Genes Chromosom Cancer 17: 234–244.

    Article  PubMed  CAS  Google Scholar 

  39. Royle N, Hill M, Jeffreys A (1992) Isolation of telomere junction fragments by anchored polymerase chain reaction. Proc Royal Soc London: Series B 247: 57–61.

    Article  CAS  Google Scholar 

  40. Fawcett JJ, Longmire JL, Martin JC, Deaven LL, Cram LS (1994) Large-scale chromosome sorting. Methods Cell Biol 42: 319–330.

    Article  PubMed  Google Scholar 

  41. Wimmer K, Thoraval D, Asakawa J, Kuick R, Kodaira M, Lamb B, Fawcett J, Glover T, Cran S, Hanash S (1996) Two-dimensional separation and cloning of chromosome 1 Notv-Eco-RI-derived genomic fragments. Genomics 38: 124–134.

    Article  PubMed  CAS  Google Scholar 

  42. Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, Parks WP (1973) In vitro cultivation of human tumors: Establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst 51: 1417–1423.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this chapter

Cite this chapter

Hanash, S.M. et al. (1998). DNA Methylation Changes in Lung Cancer. In: Martinet, Y., Hirsch, F.R., Martinet, N., Vignaud, JM., Mulshine, J.L. (eds) Clinical and Biological Basis of Lung Cancer Prevention. Respiratory Pharmacology and Pharmacotherapy. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8924-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8924-7_13

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9829-4

  • Online ISBN: 978-3-0348-8924-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics