Skip to main content

Abstract

Apoptosis is a single word that describes the complex contortions of the membrane and organelles of a cell as it goes through the process of programmed cell death. During this process, the cell activates an intrinsic suicide programme and systematically destroys itself. Apoptosis occurs rapidly, usually taking between a few minutes and a couple of hours, and can be fascinating to watch in real time down a microscope. The following series of events can be observed: the cell surface begins to bleb and express pro-phagocytic signals, and the cell then separates from its neighbours. The nucleus also goes through a characteristic pattern of morphological changes as it commits genetic suicide: the chromatin condenses and is specifically cleaved to fragments of DNA (Fig. l).The whole apoptotic cell then fragments into membrane-bound vesicles that are rapidly and cleanly disposed of by phagocytosis, so that there is minimal damage to the surrounding tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Fraser and G. Evan: A license to kill. Cell 85, 781–784 (1996).

    PubMed  CAS  Google Scholar 

  2. R.E. Ellis, J. Yuan, H.R. Horvitz: Mechanisms and functions of cell death. Ann. Rev. Cell Biol., 663–698 (1991).

    Google Scholar 

  3. A.H. Wyllie, M.J. Arends, R.G. Morris, S.W. Walker and G. Evan: The apoptosis endo-nuclease and its regulation. Semin. Immunol. 4(6), 379–389 (1992).

    Google Scholar 

  4. D.L. Vaux: Toward an understanding of the molecular mechanisms of physiological cell death. Proc. Natl. Acad. Sci., USA 90(3), 786–789 (1993).

    Google Scholar 

  5. A.H. Wyllie: The genetic regulation of apoptosis. Curr. Opin Genet. Dev. 5(1), 97–104 (1995).

    PubMed  CAS  Google Scholar 

  6. D. Hockenbery: Defining apoptosis. Am. J. Pathol. 146(1), 16–19 (1995).

    PubMed  CAS  Google Scholar 

  7. S. Kumar: ICE-like proteases in apoptosis. Trends Biochem. Sci. 20(5), 198–202 (1995).

    PubMed  CAS  Google Scholar 

  8. D.R. Dowd: Calcium regulation of apoptosis. Adv. Second Messenger Phosphoprotein Res. 30, 255–280 (1995).

    PubMed  CAS  Google Scholar 

  9. S. Orrenius: Apoptosis: molecular mechanisms and implications for human disease. J. Intern. Med. 237(6), 529–536 (1995).

    PubMed  CAS  Google Scholar 

  10. C.B. Thompson: Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456–1462 (1995).

    PubMed  CAS  Google Scholar 

  11. A.C. Lo, L.J. Houenou and R.W. Oppenheim: Apoptosis in the nervous system: morphological features, methods, pathology and prevention. Arch. Histol. Cytol. 58(2), 139–149 (1995).

    PubMed  CAS  Google Scholar 

  12. D.E. Bredesen: Neural apoptosis. Ann. Neurol. 38(6), 839–851 (1995).

    PubMed  CAS  Google Scholar 

  13. C.W. Cotman and J.A. Anderson: A potential role for apoptosis in neurodegeneration and Alzheimer’s disease. Mol. Neurobiol. 10, 19–45 (1995).

    PubMed  CAS  Google Scholar 

  14. P. Spence, R. Franco, A. Wood and J.A. Moyer: Mechanisms of apoptosis as drug targets in the central nervous system. Exp. Opin. Ther. Patents 6(4), 345–366 (1996).

    CAS  Google Scholar 

  15. A. Gltiksmann: Cell death in normal vertebrate ontogeny. Biol. Rev. 26, 59–86 (1951).

    Google Scholar 

  16. R.A. Lockshin and C.M. Williams: Programmed cell death. II. Endocrine potentiation of the braekdown of the intersegmental muscles of silkmoths. J. Insect Physiol. 10, 643–649 (1964).

    CAS  Google Scholar 

  17. J.R. Tata: Requirement for RNA and protein synthesis for induced regression of tadpole tail in organ culture. Dev. Biol. 13, 77–94 (1966).

    PubMed  CAS  Google Scholar 

  18. J.E.R. Kerr, A.H. Wyllie, A.R. Currie: Apotosis: a basic biological phenomenon with wide ranging implications in tissue kinetics. Br. J. Cancer 26, 239 (1972).

    PubMed  CAS  Google Scholar 

  19. J. Funder: Apoptosis: two p or not two p. Nature 371, 98 (1994); S. Norby: Opting for Silence. Nature 372, 132 (1994).

    Google Scholar 

  20. J. Funder: Apoptosis forever. Nature 373, 379 (1994).

    Google Scholar 

  21. D. Hockenbery, G. Nunez, C. Milliman et al.: Bc1-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348, 334–336 (1990).

    PubMed  CAS  Google Scholar 

  22. Y.J. Liu, D.E. Joshua, G.T. Williams et al.: Mechanisms of antigen driven selection in germinal centres. Nature 342, 21–28 (1989).

    Google Scholar 

  23. J.C. Ameisen and A. Capron: Cell dysfunction and depletion in AIDS: the program cell death hypothesis. Immunol. Today 12, 102–105 (1991).

    PubMed  CAS  Google Scholar 

  24. M.L. Gougeon, R. Oliver, S. Garcia et al.: Demonstration of an engagement process towards cell death by apoptosis in lymphocytes of HIV-infected patients. C.R. Acad. Sci. 312, 529–537 (1991).

    CAS  Google Scholar 

  25. R.J. Clem, M. Fechheimer and L.K. Miller: Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science 254, 1388–1390 (1991).

    PubMed  CAS  Google Scholar 

  26. P.A. Hershberger, J.A. Dickson and P.D. Friesen: Site-specific mutagenesis of the 35-kilodalton protein gene encoded by Autographa californica nuclear polyhedrosis virus: cell line-specific effects on virus replication. J. Virol. 66, 5525–5533 (1992).

    PubMed  CAS  Google Scholar 

  27. 1ER. Kerr and B.V. Harmon: Definition and incidence of apotosis an historical perspective. In L.D. Tomei and F.O. Cope, eds. Apoptosis: the molecular basis of cell death. Cold Spring Harbor Laboratory Press, Plainview, NY 1991, 5–29.

    Google Scholar 

  28. S.V. Lennon, S.J. Martin and T.G. Cotter: Dose-dependent induction of apoptosis in human tumor cell lines by widely diverging stimuli. Cell Prolif. 24, 203–214 (1991).

    PubMed  CAS  Google Scholar 

  29. L.D. Tomei, J.P. Shapiro and F.O. Cope: Apoptosis in C3H/10T1/2 mouse embryonic cells: evidence for internucleosomal DNA modification in the absence of double-strand cleavage. Proc. Natl. Acad. Sci. USA. 90, 853–857 (1992).

    Google Scholar 

  30. A.H. Wyllie: Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284, 555–556 (1980).

    PubMed  CAS  Google Scholar 

  31. D.J. McConkey and S. Orrenius: Cellular signaling in thymocyte apoptosis. In L.D. Tomei and F.O. Cope, eds. Apoptosis: the molecular basis of cell death. Cold Spring Harbor Laboratory Press, Plainview, NY 1991, 227–246.

    Google Scholar 

  32. L.D. Tomei: Apoptosis: a program for death or survival? In L. D. Tomei and F. O. Cope, eds. Apoptosis: the molecular basis of cell death. Cold Spring Harbor Laboratory Press, Plainview, NY 1991, 279–316.

    Google Scholar 

  33. A. Batistatou and L.A. Greene: Aurintricarboxlyic acid recuses PC-12 cells and sympathetic neurones from cell death caused by nerve growthfactor deprivation: correlation with suppresion of endonuclease activity. J. Cell Biol. 115, 461–471 (1991).

    PubMed  CAS  Google Scholar 

  34. M.L. Gaido and J.A. Cidowski. Indentification, purification and characterisation of a calcium-dependent endonuclease (NUC18) from apoptotic rat thymocytes. NUC18 is not histone H2B. J. Biol. Chem. 266, 18580–18585 (1991).

    PubMed  CAS  Google Scholar 

  35. R.W. Oppenheim: Cell death during the development of the nervous system. Ann. Rev. Neurosci. 14, 453–501 (1991).

    PubMed  CAS  Google Scholar 

  36. E. Janec and R.E. Burke: Naturally occuring cell death during postnatal development of the substantia nigra pars compacts of the rat. Molec. Cell Neurosci. 4, 30–35 (1993).

    PubMed  CAS  Google Scholar 

  37. A. Macaya, F. Munell, R.M. Gubits. and R.E. Burke: Apoptosis in substantia nigra following developmental striatal excitotoxic injury. Proc. Natl. Acad. Sci, USA 91(17), 8117–8121 (1994).

    PubMed  CAS  Google Scholar 

  38. K.A. Wood, B. Dipasquale and R.J. Youle. In situ labeling of granule cells for apoptosis-associated DNA fragmentation reveals different mechanisms of cell loss in developing cerebellum. Neuron 11(4): 621–632 (1993).

    PubMed  CAS  Google Scholar 

  39. C.M. Waters, W. Moser, G. Walkinshaw and I.J. Mitchell. Death of neurons in the neonatal rodent and primate globus pallidus occurs by a mechanism of apoptosis. Neurosci. 63(3): 881–894 (1994).

    CAS  Google Scholar 

  40. A.G. Estevez, R. Radi, L. Barbeito, J.T. Shin, J.A. Thompson and J.S. Beckman:-Peroxynitrite-induced cytotoxcity in PC-12 cells: evidence for an apototic mechanism differentially modulated by neurotrophic factors J. Neurochem. 65, 1543–1550 (1995).

    PubMed  CAS  Google Scholar 

  41. Y. Agid: Aging, disease and nerve cell death. Bull. Acad. Natl. Med. 179(6), 1193–1203 (1995).

    PubMed  CAS  Google Scholar 

  42. I.J. Mitchell, S. Lawson, B. Mose, S.M. Laidlaw, A.J. Cooper, G. Walkinshaw and C.M. Waters: Glutamate-induced apoptosis results in a loss of striatal neurons in the Pakin-sonian rat. Neurosci. 63(1), 1–5 (1994).

    CAS  Google Scholar 

  43. A.M. Janson: Apoptosis-like neuronal death in vivo in the MPTP mouse model of Parkinson’s disease. 25th Soc. Neurosci. San Diego, USA 21, 1273 (1995).

    Google Scholar 

  44. V. Jackson-Lewis, M.W. Jakowec, R.E. Burke and S. Przedborski: Time course and morphology of MTPT-induced neuronal death. 25th Soc. Neurosci. San Diego, USA 21, 2002 (1995).

    Google Scholar 

  45. Y.A. Barde: Trophic factors and neuronal survival. Neuron 2, 1525–1534 (1989).

    PubMed  CAS  Google Scholar 

  46. H. Thoenen, F.A. Barde, A.M. Davies and J.E. Johnson: Neurotrophic factors and neuronal death. In: Selective neuronal death. Ciba Found. Symp. 126, 82–95 (1987).

    CAS  Google Scholar 

  47. R.M. Lindsay: Neuron saving schemes. Nature 373, 289–290 (1995).

    PubMed  CAS  Google Scholar 

  48. M. Baringa: Neurotrophic factors enter the clinic. Science 264, 212A–221A (1994).

    Google Scholar 

  49. G. Walkinshaw and CM. Waters: Neurotoxin-induced cell death in neuronal PC-12 cells is mediated by induction of apoptosis. Neurosci. 63(4), 975–987 (1994).

    CAS  Google Scholar 

  50. G. Walkinshaw and C.M. Waters: Induction of apoptosis in catecholeaminergic PC-12 cells by L-DOPA: implications for the treatment of Parkinson’s Disease. J. Clin. Invest. 95, 2458–2464 (1995).

    PubMed  CAS  Google Scholar 

  51. D.T. Dexter, A, Carayon, M. Vidailhet, M. Rugerb, F. Agid, AJ. Lees, F.R. Wells, P. Jenner and D. Marsden: Decreased ferritin levels in the brain in Parkinson’s Disease. J. Neurochem 55, 16–20 (1990).

    PubMed  CAS  Google Scholar 

  52. A. Hartley. J.M. Stone, C Heron, IM. Cooper, A.H.V. Schapira: Complex inhibitors induce dose-dependent apoptosis in PC-12 cells: relevance to parkinson’s disease. J. Neurochem. 63, 1987–1990 (1994).

    Google Scholar 

  53. B. Dipasquale, A.M. Marini and R.J. Youle: Apoptosis and DNA degradation induced by MTPT in neurons. Biochem. Biophys. Res. Commun. 181, 1442–1448 (1991).

    PubMed  CAS  Google Scholar 

  54. J.H. Su, AJ. Anderson, B.J. Cummings and C.W. Cotman: Immunohistochemical evidence for apoptosis in Alzheimer’s disease. NeuroReport 5, 2529–2533 (1994).

    PubMed  CAS  Google Scholar 

  55. J.H. Su, A.J. Anderson and C.W. Cotman: Quantitative assessment of apoptotic-like nuclei in hippocampal formation of Alzheimer brain. 25th Soc. Neurosci. San Diego, USA 21, 1727 (1995).

    Google Scholar 

  56. M. Dragunow: DNA fragmentation in Alzheimer’s disease hippocampus correlation with tau and β-amyloid immunoreactivity. 25th Soc. Neurosci. San Diego, USA 21, 1724 (1995).

    Google Scholar 

  57. A.J. Anderson, J.H. Su and C.W. Cotman: DNA damage and apoptosis in Alzheimer’s disease: colocalisation with c-JUn immunoreactivity, relationship to brain area and effects of postmortem delay. J. Neurosci. 16(5), 1710–1719 (1996).

    PubMed  CAS  Google Scholar 

  58. H. Lassman, C Bancher, H. Breitschopf, J. Wegiel, M. Bobinski, K. Jellinger and H.M. Wisniewski: Cell death in Alzheimer’s disease evaluated by DNA fragmentation in situ. Acta Neuropathol. 89, 35–41 (1995).

    Google Scholar 

  59. L.S. Perlmutter, A.F. Bushneil, Y.-P Li, S. Webster and S. Wong: Evidence for DNA damage, but not apoptosis, in Alzheimer’s diseased brain. 25th Soc. Neurosci. San Diego, USA 21, 1721 (1995).

    Google Scholar 

  60. A. Mighelia, P. Cavalla, R Piva, M.T. Giordana and D. Schiffer: Bcl-2 protein expression in aged brain and neurodegenerative diseases. NeuroReport 5, 1906–1908 (1994).

    Google Scholar 

  61. T. Satou, B.J. Cummings and C.W. Cotman: Bcl-2 protein immunoreactivity increases in Alzheimer’s disease brain with disease severity. 25th Soc. Neurosci. San Diego, USA 27, 1726 (1995).

    Google Scholar 

  62. S. O’Barr, J. Schultz, M. McKinley and J. Rogers: Expression of Bcl-2 oncoprotein in Alzheimers disease. 25th Soc. Neurosci. San Diego, USA 21, 740 (1995).

    Google Scholar 

  63. E.M. Johnson: Possible role of neuronal apotosis in Alzheimer’s disease. Neurobiol. Aging 15(2), S187–S189 (1994).

    PubMed  Google Scholar 

  64. EM. Laferla, B.T. Tinkle, C.J. Bieberich, C.C. Haudenschild and G. Jay: The Alzheimer’s Aß-peptide-induced neurodegeneration and apoptotic cell death in transgenic mice Nat. Genet. 9, 21–30 (1995).

    CAS  Google Scholar 

  65. P. Vito, E. Lacana and L. D’Adamio: Interfering with apoptosis: Ca2+-binding protein ALG-2 and Alzheimer’s disease gene ALG-3. Science 271, 521–525 (1996).

    PubMed  CAS  Google Scholar 

  66. G. Forloni, R. Chiesa, S. Smiroldo, L. Verga, M. Salmona, F. Tagliavini and N. Ange-retti: Apoptosis mediated neurotoxicity induced by chronic application of ß-amy-loid fragment 25-35. NeuroReport 4, 523–526 (1993).

    PubMed  CAS  Google Scholar 

  67. D.T. Loo, A. Copani, C.J. Pike, R.R. Whittemore, A.J. Walencewicz and C.W. Cot-man: Apoptosis is induced by ß-amyloid in cultures central nervous system neurons. Proc. Natl. Acad. Sci. USA 4, 523–526 (1993).

    Google Scholar 

  68. C. Behl, J.B. Davis, EG. Klier and D. Schubert: Amyloid ß-peptide induces necrosis rather than apoptosis. Brain Res. 645, 253–264 (1994).

    PubMed  CAS  Google Scholar 

  69. M. Gschwind and G. Huber: Apoptotic cell death induced by ß-amyloid peptide is cell type dependent. J. Neurochem. 65(1), 292–300 (1995).

    PubMed  CAS  Google Scholar 

  70. J.W. Kuisak, S.S. Sisodia and B. Zhao: Apoptosis is induced by expression of mutant amyloid precursor protein in neuronal cells. In: neurodegenerative disorders: common molecular mechanisms, the decade of the brain. Rios, Jamaica 1995; IX: Apoptosis and neurodegenerative disorders.

    Google Scholar 

  71. D.W. Choi: Cerebral hypoxia: some new approaches and unanswered questions. J. Neurosci. 10, 2493–2501 (1990).

    PubMed  CAS  Google Scholar 

  72. XT. Coyle and P. Puttfarcken: Oxidative stress, glutamate and neurodegenerative disorders. Science 262, 689–695 (1993).

    PubMed  CAS  Google Scholar 

  73. N.R. Sims and E. Zaidan: Biochemical changes associated with selective neuronal death following short-term cerebral ischaemia. Int. J. Biochem. Cell Biol. 27(6), 531–550 (1995).

    PubMed  CAS  Google Scholar 

  74. M.D. Linnik, R.H. Zobrist and M.D. Hatfield: Evidence supporting a role for programmed cell death in focal cerebral ischaemia in rats. Stroke 24, 2002–2009 (1993).

    PubMed  CAS  Google Scholar 

  75. J.M. MacManus, A.M. Buchan, I.E. Hill, I. Rasquinha and E. Preston: Global iscaemia can cause DNA fragmentation indicative of apoptosis in rat brain. Neurosci. Lett. 164(1-2), 89–92 (1993).

    PubMed  CAS  Google Scholar 

  76. M. Okamoto, M. Matsumoto, T. Ontsuki, A. Taguichi, K. Mikoshita, T. Yanagihara and T. Kamada: Internucleosomal DNA cleavage involved in ischaemia-induced neuronal death. Biochem. Biophys. Res. Commun 196(3), 1356–1362 (1993).

    PubMed  CAS  Google Scholar 

  77. E.M. Johnson, L.J.S. Greenlund, P.T. Akins and C.Y. Hsu: Neuronal apoptosis: current understanding of molecular mechanisms and potential role in ischaemic brain injury. J. Neurotrauma 12(5), 843–852 (1995).

    PubMed  Google Scholar 

  78. S. Kure, T. Tominaga, T. Yoshimoto, K. Tada and K. Narisawa: Glutamate triggers internucleosomal DNA cleavage in neuronal cells. Biochem. Biophys. Res. Commun. 179(1), 39–45 (1991).

    PubMed  CAS  Google Scholar 

  79. F. Dessi, C. Charriaut-Marlangue, M. Khrestchatisky, Y. Ben-Ari: Glutamate-induced neuronal death is not a programmed cell death in cerebellar cultures. J. Neurochem. 60(5), 1953–1955 (1993).

    PubMed  CAS  Google Scholar 

  80. D.W. Choi, K. Koh, J.A. Demaro, H.S. Ying, M.F. Jaquin and V.J. Gwag: Even slowly triggered neuronal death of cultured cortical neurons occurs by necrosis not apoptosis. 25th Soc. Neurosci. San Diego, USA 21, 1585 (1995).

    Google Scholar 

  81. M. Ankarcrona, J.M. Dypbukt, E. Bonfoco, B. Zhivotovsky, S. Orrenius, S.A. Lipton and P. Nicotera: Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15(4), 961–973 (1995).

    PubMed  CAS  Google Scholar 

  82. B.J. Gwag, D. Lobner, J.Y. Koh, M.B. Wie and D.W. Choi: Blockade of glutamate receptors unmasks neuronal apoptosis after oxygen-glucose deprivation in vitro Neu-rosci. 68(3), 615–619 (1995).

    CAS  Google Scholar 

  83. A. Copani, V.M.G. Bruno, V. Barresi, G. Battaglia, D.F. Condorelli and F. Nicoletti: Activation of metabatropic glutamate receptors prevents neuronal apotosis in culture. J. Neurochem. 64(1), 101–108 (1995).

    PubMed  CAS  Google Scholar 

  84. J.Y. Koh, E. Palmer and C.W. Cotman: Activation of the metabotropic glutamate receptor attenuates NMDA neurotoxicity in cortical cultures. Proc. Natl Acad. Sci USA 88, 9431–9435 (1991).

    PubMed  CAS  Google Scholar 

  85. R.F. Regan and D.W. Choi: Excitotoxicity and central nervous system trauma. In: The Neurobiology of Central Nervous System Trauma. S.D. Salzmanand A.L. (Eds.) Oxford University Press, New York 1994, 173–181.

    Google Scholar 

  86. T.K. Mcintosh, R. Vink, L. Noble, I. Yamakami, S. Fernyak, H. Soares and L.H. Faden: Traumatic brain injury in the rat: characterisation of a lateral fluid-percussion model. Neurosci. 28, 233–244 (1989).

    CAS  Google Scholar 

  87. A. Rink, K.-M. Fung, J. Q. Trojanowski, V.M.-Y. Lee, E. Neugebauer and T.K. Mcintosh: Evidence of apototic cell death after experimental traumatic brain injury in the rat. Am J. Pathol. 147(6), 1575–1583 (1995).

    PubMed  CAS  Google Scholar 

  88. A. Conti, C.M. Hylton, R. Raghupathi, D.H. Smith, J.Q. Trojanowski, V.M.-Y. Lee and T.K. Mcintosh: Magnesium deficiency decreases the occurrence of apoptosis after traumatic brain injury. 13th Annual Neurotrauma Symposium. San Diego, USA 1995.

    Google Scholar 

  89. G. Sinson, B. Perri, J. Q. Trojanowski, V.M.-Y. Lee andT.K. Mcintosh: Apoptotic death in the septal nuclei after fluid percussion brain injury is attenuated by NGF infusion. 13th Annual Neurotrauma Symposium. San Diego, USA 1995.

    Google Scholar 

  90. W.I. McDonald and D.H. Silbergerg: Multiple sclerosis Butterworths, London, 1986.

    Google Scholar 

  91. M. Dubois-Dalq and R. Armstrong: The cellular and molecular events of the central neurons remyelination. Bioessay 12, 569–576 (1990).

    Google Scholar 

  92. B.A. Barres, I.K. Hart, H.S.R. Coles, J.F. Burne, J.T. Voyvodic, W.D. Richardson and M.C. Raff: Cell death and control of cell survival in the oligodendrocyte lineage Cell 70, 31–46 (1992).

    CAS  Google Scholar 

  93. P.E. Knapp, R.P. Skoff and W.R. Redstone: Oligodendroglial cell death in jimpy mice: an explanation for the myelin deficit. J. Neurosci. 6(10), 2813–2822 (1986).

    PubMed  CAS  Google Scholar 

  94. M.P. Pender, K.B. Nguyen, P.A. McCombe, and J.F.R. Kerr: Apoptosis in the nervous system in experimental allergic encephalomyelitis. J. Neurosci. 104, 81–87 (1991).

    CAS  Google Scholar 

  95. K. Selmaj, C.S. Raine, M. Farooq, W.T. Norton and C.F. Brosnan: Cytokine toxicity against oligodendrocytes. Apoptosis induced by lymphotoxin. J. Immunol 147(5) 1522–1529 (1991).

    PubMed  CAS  Google Scholar 

  96. S. Prabhakar, S. D’Souza, J.P. Antel J.A. McLaurin, H.M. Schipper and E. Wang: Phe-notypic and cell cycle properties of human oligodendrocytes in vitro. Brain Res. 195 672, 159–169 (1995).

    Google Scholar 

  97. D. Muir and D.A.S. Compston: Growth factor stimulation triggers apoptotic cell death in mature rat oligodendrocytes. J. Neurosci. Res. 44(1), 1–11 (1996).

    PubMed  CAS  Google Scholar 

  98. N.J. Scolding and W.A.J. Houston, C Linington, B.P. Morgan, A.K. Campbell and D.A.S. Compston: Oligodendrocytes activate complement but recover by vesicular removal of membrane attack complexes. Nature 338, 620–622 (1989).

    Google Scholar 

  99. D.R. Wren and M. Noble: Oligodendrocytes and oligodendrocyte/type-2 astrocyte progenitor cells of adult rats are specifically susceptable to the lytic effects of complement in the absence of antibody. Proc. Natl Acad. Sci. USA 86, 9025–9029 (1989).

    PubMed  CAS  Google Scholar 

  100. A. Wood, M. Wing, C.D. Benham and D.A.S. Compston: Specific induction of intracellular oscillations by complement membrane attack on oligodendroglia. J. Neurosci. 13, 3319–3332 (1993).

    PubMed  CAS  Google Scholar 

  101. Z. Tabi, P.A. McCombe and M.P. Pender: Apoptotic elimation of V beta 8.2+ cells-from the central nervous system during recovery from EAE induced by the massive transfer of V beta 8.2 encepalitogenic T cells. Eur. J. Immunol. 24(11), 2609–2617 (1994).

    PubMed  CAS  Google Scholar 

  102. C.M. Pelfrey, L.R. Tranquill, S.A. Boehme, H.E McFarland and MJ. Lenardo: Two mechanisms of antigen-specific apoptosis of myelin basic protein-specificT-lympho-cytes derived from multiple sclerosis patients and normal individuals. J. Immunol. 154(11), 6191–6202 (1995).

    PubMed  CAS  Google Scholar 

  103. X. Mu, J. He, D.W. Anderson, J.Q. Trojanowski and IE. Springer: Altered expression of bcl-2 and bax mRNA in amyotrophic lateral sclerosis motoneurons. 25th Soc. Neurosci. San Diego, USA 21, 561 (1995).

    Google Scholar 

  104. M. Dubois-Dauphin, H. Frankowski, Y. Tsujimoto, J. Huarte and J.C. Martinou: Neonatal motoneurons overexpressing the bcl-2 proto-oncogene in transgenic mice are protected from axotomy-induced cell death. Proc. Natl Acad. Sci. USA 91, 229–240 (1994).

    Google Scholar 

  105. C.M. Troy and M.L. Shelanski: Down regulation of copper/zinc Superoxide dismu-tase causes apoptotic death in PC-12 neuronal cells. Proc. Acad. Natl Sci. USA 91, 6384–6387 (1994).

    CAS  Google Scholar 

  106. L.S. Greenlund, T.L. Deckwerth, E.M. Johnson: Superoxide dismutase delays neuronal apoptosis: a role for reactive oxygen species in programmed neuronal death. Neuron 14, 303–315 (1995).

    PubMed  CAS  Google Scholar 

  107. J.D. Rothstein, L.A. Bristol, B. Hosier, R.H. Brown and R.W. Kuncl: Chronic inhi-biton of Superoxide dismutase produces apoptotic death of spinal neurons. Proc. Natl. Acad. Sci. USA 91, 4155–4159 (1994).

    PubMed  CAS  Google Scholar 

  108. S. Rabizadeh, E.B. Grallaeb, D.R. Borchelt, R. Gwinn, IS. Valentine, S. Sisodia, P. Wong, M. Lee, H. Hahn and D.E. Bredesen: Mutations associated with amyotrophic lateral sclerosis convert Superoxide dismutase from an antiapoptotic gene to a proapoptotic gene: studies in yeast and neural cells. Proc. Natl. Acad. Sci. USA 92, 3024–3028 (1995).

    PubMed  CAS  Google Scholar 

  109. I Busciglio and B.A. Yankner: Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature 378, 776–779 (1995).

    PubMed  CAS  Google Scholar 

  110. P.J. Lucassen, A. Williams, W.C Chung and H. Fraser: Dectection of apoptosis in murine scrapie. Neurosci. Lett. 198(3), 185–188 (1995).

    PubMed  CAS  Google Scholar 

  111. A. Giese, M.H. Groschup, B. Hess and H.A. Kretzschmar: Neuronal cell death in scrapie-infected mice is due to apoptosis. Brain Pathol. 5(3), 213–221 (1995).

    PubMed  CAS  Google Scholar 

  112. C. Portera-Cailliau, J.C. Hedreen, D.L. Price and V.E. Koliatos: Evidence for apoptotic cell death in Huntington’s disease and excitotoxic animal models. J. Neurosci. 15(5), 3775–3787 (1995).

    PubMed  CAS  Google Scholar 

  113. Y.A. Lazebnik, S.H. Kaufmann, S. Desnoyers, G.G. Poirier, and W.C Earnshaw: Cleavage of poly (ADP-ribose) polymerase by a proteinase with properties like ICE. Nature. 371, 346–347 (1994).

    PubMed  CAS  Google Scholar 

  114. L.A. Casciola-Rosen, D.K. Miller, G.J. Anhalt, and A. Rosen: Specific cleavage of the 70-kDa protein component of the U1 small nuclear ribonucleoprotein is a characteristic biochemical feature of apoptotic cell death. J. Biol. Chem. 269, 30757–30760 (1994).

    PubMed  CAS  Google Scholar 

  115. S.J. Martin, G.A. O’Brien, W.K. Nishioka, A.J. McGahon, A. Mahboubi, T.C Saido, and D.R. Green: Proteolysis of fodrin (non-erythroid spectrin) during apoptosis. J Biol Chem. 270, 6425–6428 (1995).

    PubMed  CAS  Google Scholar 

  116. M.J. Smyth and J.A. Trapani: Granzymes: exogenous proteinases that induce target cell apoptosis. Immunol Today. 16, 202–206 (1995).

    PubMed  CAS  Google Scholar 

  117. S. Kumar and N.L. Harvey: Role of multiple cellular proteases in the execution of programmed cell death. Febs Lett. 375, 169–173 (1995).

    PubMed  CAS  Google Scholar 

  118. M. Miura, H. Zhu, R. Rotello, E.A. Hartwieg, and J. Yuan: Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell. 75, 653–660 (1993).

    PubMed  CAS  Google Scholar 

  119. V. Gagliardini, P.A. Fernandez, R.K. Lee, H.C. Drexler, R.J. Rotello, M.C. Fishman, and J. Yuan: Prevention of vertebrate neuronal death by the crmA gene [see comments] [published erratum appears in Science 1994 Jun 3264 (5164):1388]. Science 263, 826–828 (1994).

    PubMed  CAS  Google Scholar 

  120. I. Martinou, P.A. Fernandez, M. Missotten, E. White, B. Allet, R. Sadoul, and J.C. Martinou: Viral proteins E1B19K and p35 protect sympathetic neurons from cell death induced by NGF deprivation. J Cell Biol. 128, 201–208 (1995).

    PubMed  CAS  Google Scholar 

  121. P.A. Henkart: ICE family proteases: mediators of all apoptotic cell death? Immunity. 4, 195–201 (1996).

    PubMed  CAS  Google Scholar 

  122. A. Fraser and G. Evan: A license to kill. Cell 85, 781–784 (1996).

    CAS  Google Scholar 

  123. M.K. Squier, A.C. Miller, A.M. Malkinson, and J.J. Cohen: Calpain activation in apoptosis. J Cell Physiol. 159, 229–237 (1994).

    PubMed  CAS  Google Scholar 

  124. K.K. Wang and P.W. Yuen: Calpain inhibition: an overview of its therapeutic potential. Trends Pharmacol Sci. 15, 412–419 (1994).

    PubMed  CAS  Google Scholar 

  125. J.M. Peters: Proteasomes: protein degradation machines of the cell. Trends Biochem Sci. 19, 377–382 (1994).

    PubMed  CAS  Google Scholar 

  126. A.L. Goldberg: ATP-dependent proteases in prokaryotic and eukaryotic cells. Semin Cell Biol. 1, 423–432 (1990).

    PubMed  CAS  Google Scholar 

  127. M. Pagano, S.W. Tarn, A.M. Theodoras, P. Beer-Romero, G. Del-Sal, V. Chau, P.R. Yew, G.F. Draetta, and M. Rolfe: Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27 [see comments]. Science. 269, 682–685 (1995).

    PubMed  CAS  Google Scholar 

  128. S.J. Martin and D.R. Green: Apoptosis during HIV infection. A cytopathic effect of HIV or an important host-defense mechanism against viruses in general? Adv Exp Med Biol. 374, 129–138 (1995).

    PubMed  CAS  Google Scholar 

  129. G.J. Lees: The possible contribution of microglia and macrophages to delayed neuronal death after ischemia. J Neurol Sci. 114, 119–122 (1993).

    PubMed  CAS  Google Scholar 

  130. T. Morioka, A.N. Kalehua, and W.J. Streit: Characterization of microglial reaction after middle cerebral artery occlusion in rat brain. J Comp Neurol. 327, 123–132 (1993).

    PubMed  CAS  Google Scholar 

  131. J. Gehrmann, R. Gold, C. Linington, J. Lannes-Vieira, H. Wekerle, and G.W. Kreutz-berg: Spinal cord microglia in experimental allergic neuritis. Evidence for fast and remote activation. Lab Invest. 67, 100–113 (1992).

    PubMed  CAS  Google Scholar 

  132. D. Giulian, M. Corpuz, S. Chapman, M. Mansouri, and C. Robertson: Reactive mono-nuclear phagocytes release neurotoxins after ischemic and traumatic injury to the central nervous system. J Neurosci Res. 36, 681–693 (1993).

    PubMed  CAS  Google Scholar 

  133. D. Giulian and C. Robertson: Inhibition of mononuclear phagocytes reduces ischemic injury in the spinal cord. Ann Neurol. 27, 33–42 (1990).

    PubMed  CAS  Google Scholar 

  134. R.A. Lang and J.M. Bishop: Macrophages are required for cell death and tissue remodeling in the developing mouse eye. Cell. 74, 453–462 (1993).

    PubMed  CAS  Google Scholar 

  135. E.J. Beilharz, C.E. Williams, M. Dragunow, E.S. Sirimanne, and P.D. Gluckman: Mechanisms of delayed cell death following hypoxic-ischemic injury in the immature rat: evidence for apoptosis during selective neuronal loss. Brain Res Mol Brain Res. 29, 1–14 (1995).

    PubMed  CAS  Google Scholar 

  136. B.A. Barres, R. Schmid, M. Sendnter, and M.C. Raff: Multiple extracellular signals are required for long-term oligodendrocyte survival. Development 118, 283–295 (1993).

    PubMed  CAS  Google Scholar 

  137. J. Guan, C. Williams, M. Gunning, C. Mallard, and P. Gluckman: The effects of IGF-1 treatment after hypoxic-ischemic brain injury in adult rats. J Cereb Blood Flow Metab. 13, 609–616 (1993).

    PubMed  CAS  Google Scholar 

  138. M. Oren: Relationship of p53 to the control of apoptotic cell death. Semin Cancer Biol. 5, 221–227 (1994).

    PubMed  CAS  Google Scholar 

  139. S. Sakhi, A. Bruce, N. Sun, G. Tocco, M. Baudry, and S.S. Schreiber: p53 induction is associated with neuronal damage in the central nervous system. Proc Natl Acad Sci USA 91, 7525–7529 (1994).

    PubMed  CAS  Google Scholar 

  140. L.A. Donehower, M. Harvey, B.L. Slagle, M.J. McArthur, C. Montgomery Jr., J.S. Butel, and A. Bradley: Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    PubMed  CAS  Google Scholar 

  141. S.F. Dowdy, P.W. Hinds, K. Louie, S.I. Reed, A. Arnold, and R.A. Weinberg: Physical interaction of the retinoblastoma protein with human D cyclins. Cell 73, 499–511 (1993).

    PubMed  CAS  Google Scholar 

  142. V. Baldin, J. Lukas, MJ. Marcote, M. Pagano, and G. Draetta: Cyclin Dl is a nuclear protein required for cell cycle progression in G1. Genes Dev. 7, 812–821 (1993).

    PubMed  CAS  Google Scholar 

  143. R.S. Freeman, S. Estus, and E. Johnson Jr.: Analysis of cell cycle-related gene expression in postmitotic neurons: selective induction of Cyclin Dl during programmed cell death. Neuron 12, 343–355 (1994).

    PubMed  CAS  Google Scholar 

  144. O. Kranenburg, A.J. van-der-Eb, and A. Zantema: Cyclin Dl is an essential mediator of apoptotic neuronal cell death. Embo J. 15, 46–54 (1996).

    PubMed  CAS  Google Scholar 

  145. K. Herrup and J.C. Busser: The induction of multiple cell cycle events precedes target-related neuronal death. Development 121, 2385–2395 (1995).

    PubMed  CAS  Google Scholar 

  146. K. Ando, F. Ajchenbaum-Cymbalista, and ID. Griffin: Regulation of G1/S transition by cyclins D2 and D3 in hematopoietic cells. Proc Natl Acad Sci USA 90, 9571–9575 (1993).

    PubMed  CAS  Google Scholar 

  147. T. Shimizu, P.M. O’Connor, K.W. Kohn, and Y. Pommier: Unscheduled activation of cyclin Bl/Cdc2 kinase in human promyelocytic leukemia cell line HL60 cells undergoing apoptosis induced by DNA damage. Cancer Res. 55, 228–231 (1995).

    PubMed  CAS  Google Scholar 

  148. S.C. Chen, T. Curran, and J.I. Morgan: Apoptosis in the nervous system: new revelations. J Clin Pathol. 48, 7–12 (1995).

    PubMed  CAS  Google Scholar 

  149. Y. Gazitt and G.W. Erdos: Fluctuations and ultrastructural localization of oncopro-teins and cell cycle regulatory proteins during growth and apoptosis of synchronized AGF cells. Cancer Res. 54, 950–956 (1994).

    PubMed  CAS  Google Scholar 

  150. L.H. Tsai, I. Delalle, V. Caviness Jr., T. Chae, and E. Harlow: p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371, 419–423 (1994).

    PubMed  CAS  Google Scholar 

  151. D. Tang, J. Yeung, K.Y. Lee, M. Matsushita, H. Matsui, K. Tomizawa, O. Hatase, and J.H. Wang: An isoform of the neuronal cyclin-dependent kinase 5 (Cdk5) activator. J Biol Chem. 270, 26897–268903 (1995).

    PubMed  CAS  Google Scholar 

  152. J. Ham, C. Babij, J. Whitfield, C.M. Pfarr, D. Lallemand, M. Yaniv, and L.L. Rubin: A c-Jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron 14, 927–939 (1995).

    PubMed  CAS  Google Scholar 

  153. Z. Xia, M. Dickens, J. Raingeaud, R.J. Davis, and M.E. Greenberg: Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 1326–1331 (1995).

    PubMed  CAS  Google Scholar 

  154. Z.N. Oltvai and S.J. Korsmeyer: Checkpoints of dueling dimers foil death wishes [comment]. Cell 79, 189–192 (1994).

    PubMed  CAS  Google Scholar 

  155. G.A. Silverman, E. Yang, J.H. Proffitt, M. Zutter, and S.J. Korsmeyer: Genetic transfer and expression of reconstructed yeast artificial chromosomes containing normal and translocated BCL2 proto-oncogenes. Mol Cell Biol. 13, 5469–5478 (1993).

    PubMed  CAS  Google Scholar 

  156. C.M. Knudson, K.S. Tung, W.G. Tourtellotte, G.A. Brown, and S.J. Korsmeyer: Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270, 96–99 (1995).

    PubMed  CAS  Google Scholar 

  157. E.H. Cheng, B. Levine, L.H. Boise, C.B. Thompson, and J.M. Hardwick: Bax-inde-pendent inhibition of apoptosis by Bcl-XL. Nature 379, 554–556 (1996).

    PubMed  CAS  Google Scholar 

  158. H. Frankowski, M. Missotten, P.A. Fernandez, I. Martinou, P. Michel, R. Sadoul, and J.C. Martinou: Function and expression of the Bcl-x gene in the developing and adult nervous system. Neuroreport 6, 1917–21 (1995).

    PubMed  CAS  Google Scholar 

  159. N. Motoyama, F. Wang, K.A. Roth, H. Sawa, K. Nakayama, K. Nakayama, I. Negi-shi, S. Senju, Q. Zhang, S. Fujii, et al: Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267, 1506–10 (1995).

    PubMed  CAS  Google Scholar 

  160. D.J. Veis, C.M. Sorenson, J.R. Shutter, and S.J. Korsmeyer: Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75, 229–40 (1993).

    PubMed  CAS  Google Scholar 

  161. E. Yang, J. Zha, J. Jockei, L.H. Boise, C.B. Thompson, and S.J. Korsmeyer: Bad, a het-erodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80, 285–91 (1995).

    PubMed  CAS  Google Scholar 

  162. S. Krajewski, S. Bodrug, M. Krajewska, A. Shabaik, R. Gascoyne, K. Berean, and J.C Reed: Immunohistochemical analysis of Mcl-1 protein in human tissues. Differential regulation of Mcl-1 and Bcl-2 protein production suggests a unique role for Mcl-1 in control of programmed cell death in vivo. Am J Pathol. 146, 1309–19 (1995).

    PubMed  CAS  Google Scholar 

  163. S.P. Jaw, D.D. Su, and D.D. Truong: Expression of Bcl-2 and Bax in the frontoparietal cortex of the rat following cardiac arrest. Brain Res Bull. 38, 577–80 (1995).

    PubMed  CAS  Google Scholar 

  164. M.P. Mattson, S.W. Barger, J.G. Begley, and R.J. Mark: Calcium, free radicals, and excitotoxic neuronal death in primary cell culture. Methods Cell Biol. 46, 187–216 (1995).

    PubMed  CAS  Google Scholar 

  165. D.W. Choi: Calcium: still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci. 18, 58–60 (1995).

    PubMed  CAS  Google Scholar 

  166. D.D. Friel and R.W Tsien: An FCCP-sensitive Ca2+ store in bullfrog sympathetic neurons and its participation in stimulus-evoked changes in [Ca2+]i. J Neurosci. 14, 4007–24 (1994).

    PubMed  CAS  Google Scholar 

  167. C. Giulivi, A. Boveris, and E. Cadenas: Hydroxyl radical generation during mito-chondrial lectron transfer and the formation of 8-hydroxydesoxyguanosine in mitochondrial DNA. Arch Biochem Biophys. 316, 909–16 (1995).

    PubMed  CAS  Google Scholar 

  168. R.F. Castilho, A.J. Kowaltowski, A.R. Meinicke, and A.E. Vercesi: Oxidative damage of mitochondria induced by Fe (II)citrate or t-butyl hydroperoxide in the presence of Ca2+: effect of coenzyme Q redox state. Free Radie Biol Med. 18, 55–9 (1995).

    CAS  Google Scholar 

  169. L.L. Dugan, V.M. Bruno, S.M. Amagasu, and R.G. Giffard: Glia modulate the response of murine cortical neurons to excitotoxicity: glia exacerbate AMPA neurotoxicity. J Neurosci. 15, 4545–55 (1995).

    PubMed  CAS  Google Scholar 

  170. I.J. Reynolds and T.G. Hastings: Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J Neurosci. 75, 3318–27 (1995).

    Google Scholar 

  171. M.A. Ator and R.E. Dolle: Interleukin-1ß converting enzyme: biology and chemistry of inhibitors. Curr. Pharmaceutical Design 7, 191–210 (1995).

    Google Scholar 

  172. J. Rotonda, D.W. Nicholson, K.M. Fazil, M. Gallant, Y. Gareau, M. Labelle, E.P. Peterson et al.: The three-dimensional structure of apopain/CPP-32, a key mediator of apoptosis. Nat. Struct. Biol. 3(7), 619–625 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Basel AG

About this chapter

Cite this chapter

Hajimohamadreza, I., Treherne, J.M. (1997). The role of apoptosis in neurodegenerative diseases. In: Jucker, E. (eds) Progress in Drug Research / Fortschritte der Arzneimittelforschung / Progrès des recherches pharmaceutiques. Progress in Drug Research / Fortschritte der Arzneimittelforschung / Progrès des recherches pharmaceutiques, vol 48. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8861-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8861-5_3

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9806-5

  • Online ISBN: 978-3-0348-8861-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics