On the Approximate Controllability for Higher Order Parabolic Nonlinear Equations of Cahn-Hilliard Type

  • J. I. Díaz
  • A. M. Ramos
Conference paper
Part of the International Series of Numerical Mathematics book series (ISNM, volume 126)

Abstract

We prove the approximate controllability property for some higher order parabolic nonlinear equations of Cahn-Hilliard type when the nonlinearity is of sublinear type at infinity. We also give a counterexample showing that this property may fail when the nonlinearity is of superlinear type.

1991 Mathematics Subject Classification

93B05 93C20 35K55 

Key words and phrases

Approximate controllability higher order nonlinear parabolic boundary value problems Cahn-Hilliard type equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aubin, J.P.: Un théorème de compacité. C. R. Acad. Sci., Paris, Serie I, T. 256, pp. 5042–5044,(1963).Google Scholar
  2. 2.
    Aubin, J.P.: L’analyse non linéaire et ses motivations économiques. Masson. (1984).Google Scholar
  3. 3.
    Aubin, J.P. and Ekeland, I.: Applied nonlinear Analysis. Wiley-Interscience Publication, New York, 1984).MATHGoogle Scholar
  4. 4.
    Bernis, F.: Elliptic and Parabolic Scmilincar Problems without Conditions at infinity. Arch. Rat Mech. Anal, Vol. 106, N. 3, pp. 217–241, (1989).MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Brezis, H.: Analyse Fonctionnelle: Théorie et applications. Masson, Paris, (1987).Google Scholar
  6. 6.
    Cahn, J.W. and Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. N. 28, pp. 258–267, (1958).CrossRefGoogle Scholar
  7. 7.
    Díaz, J.I. and Ramos, A.M.: Positive and negative approximate controllability results for semi-linear parabolic equations. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales, Madrid, LXXXIX, pp. 11–30 (1995).Google Scholar
  8. 8.
    Elliot, CM. and Songmu, Z.: On the Cahn-Hilliard Equation. Arch. Rat. Mech. Anal N. 96, pp. 339–357, (1986).Google Scholar
  9. 9.
    Fabre, C, Puel, J.P. and Zuazua, E.: Contrôlabilité approchée de l‘équation de la chaleur semi-linéaire. C. R. Acad. Sci. Paris, t. 315, Série I, pp. 807–812, (1992).Google Scholar
  10. 10.
    Fabre, C, Puel, J.P. and Zuazua, E.: Approximate controllability of the semilinear heat equation, Proceedings of the Royal Society of Edinburgh, 125A, pp. 31–61, (1995).MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Haraux, A.: Nonlinear Evolution Equations. Lecture Notes in Mathematics. Springer-Verlag, Heidelberg, (1981).Google Scholar
  12. 12.
    Lions, J.L.: Contrôle optimal de systemes gouvernés par des equations aux derivées partielles. Dunod, Paris, (1968).MATHGoogle Scholar
  13. 13.
    Lions, J.L.: Quelques méthodes de résolution des problèms aux limites non linéares. Dunod, Paris, (1969).Google Scholar
  14. 14.
    Lions, J.L.: Remarques sur la conträlabilité approchée. In Proceedings of Jornadas Hispano-Francesas sobre Control de Sistemas Distribuidos, Universidad de Malaga, pp. 77–88, (1990).Google Scholar
  15. 15.
    Lions, J.L. and Magenes, E.: Problémes aux limites non homogénes et applications, Vol. 1, Dunod, Paris, (1968).MATHGoogle Scholar
  16. 16.
    Lions, J.L. and Magenes, E.: Problémes aux limites non homogénes et applications, Vol. 2, Dunod, Paris, (1968).MATHGoogle Scholar
  17. 17.
    Saut, J.C. and Scheurer, B.: Unique continuation for some evolution equations. J. Differential Equations, Vol. 66, N. 1, pp. 118–139, (1987).MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Simon, J.: Compact Sets in the Space Lp(O,T;B). Annali di Matematica Pura ed Applicata. Serie 4, N. 146, pp.65–96, (1987).MATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1998

Authors and Affiliations

  • J. I. Díaz
    • 1
  • A. M. Ramos
    • 2
  1. 1.Dpto. Matemática AplicadaUniversidad Complutense de MadridMadridSpain
  2. 2.Dpto. Informática y AutomáticaUniversidad Complutense de MadridMadridSpain

Personalised recommendations