Skip to main content

Molecular splicing of metallothionein — study on domains of metallothionein

  • Chapter
Metallothionein IV

Part of the book series: Advances in Life Sciences ((ALS))

Abstract

Mammalian metallothioneins (MTs) are a class of low-molecular weight proteins containing 20 cysteine residues out of a total of 61 amino acid residues. MTs fold into two separate domains in the presence of certain metal ions [1,2]. Each domain binds metal ions in a polynuclear metalthiolate cluster with ligation through thiolates of the 20 cysteines residues [3]. Several NMR studies showed that the seven Cd(II) ions in the protein were positioned into the two clusters: α domain-with four Cd(II) ions and 11 cysteine residues, and β domain-with three Cd(II) ions and 9 cysteine residues [4–6]. The two spherical domains, with a similar diameter of 1.5–2.0 nm, are connected by a hinge region consisting of a conserved Lys-Lys-Ser (KKS) segment in the middle of the polypeptide chain [7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Otvos JD and Armitage IM (1980) Structure of the metal clusters in rabbit liver metallothionein. Proc Natl Acad Sci USA 77: 7094–7098.

    Article  PubMed  CAS  Google Scholar 

  2. Winge DR and Miklossy KA (1982) Domain nature of metallothionein. J Biol Chem 257: 3471–3476.

    PubMed  CAS  Google Scholar 

  3. Braun WM, Wagner G, Worgotter E, Vašák M, Kägi JHR and Wuthrich K (1986) Polypeptide fold in the two metal clusters of metallothionein-2 by nuclear magnetic resonance in solution. J Mol Biol 187: 125–129.

    Article  PubMed  CAS  Google Scholar 

  4. Schultze P, Worgotter E, Braun WM, Wagner G, Vašák M, Kägi JHR and Wuthrich K (1988) Conformation of [Cd7]-metallothionein-2 from rat liver in aqueous solution determined by nuclear magnetic resonance spectroscopy. J Mol Biol 203: 251–268.

    Article  PubMed  CAS  Google Scholar 

  5. Arseniev A, Schultze P, Worgotter E, Braun WM, Wagner G, Vašák M, Kägi JHR and Wuthrich K (1988) Three-dimensional structure of rabbit liver [Cd7]-metallothionein-2a in aqueous solution determined by nuclear magnetic resonance. J Mol Biol 201: 637–657.

    Article  PubMed  CAS  Google Scholar 

  6. Messerle BA, Schaffer A, Vašák M, Kägi JHR and Wuthrich K (1992) Comparison of the solution conformations of human [Zn7]-metallothionein-2 and [Cd7]-metallothionein-2 using nuclear magnetic resonance spectroscopy. J Mol Biol 225: 433–443.

    Article  PubMed  CAS  Google Scholar 

  7. Kägi JHR and Schaffer A (1988) Biochemistry of metallothionein. Biochemistry 27: 8509–8515.

    Article  PubMed  Google Scholar 

  8. Nielson KB and Winge DR (1984) Preferential binding of copper to the β domain of metallothionein. J Biol Chem 259: 4941–4946.

    PubMed  CAS  Google Scholar 

  9. Zelazowski AJ, Szymanska JA, Law AYC and Stillman MJ (1984) Spectroscopic properties of the alpha fragment of metallothionein. J Biol Chem 259: 12960–12963.

    PubMed  CAS  Google Scholar 

  10. Yu J, Zhou YJ and Ru BG (1997) The preparation and analysis of rabbit liver MT β domain. Chinese Biochem J (in Chinese) 13(4): 451–459.

    Google Scholar 

  11. Okada Y, Ohto N, Yagyu M, Min KS, Onosaka S and Tanaka K (1985) Synthesis of a nonacosapeptide (β-fragment) corresponding to the N-terminal sequence 1–29 of human liver metallothionein II and its heavy metal-binding properties. FEBS Lett 183(2): 375–378.

    Article  PubMed  CAS  Google Scholar 

  12. Matsumoto S, Nakayama S, Nishiyama Y, Okada Y, Min KS, Onosaka S and Tanaka K (1992) Amino acids and peptides. XXXIV. Synthsis of mouse metallothionein I. (1). Synthesis of dotriacontapeptide corresponding to C-terminal sequence 30–61 (α-fragment) of mouse metallothionein I and related peptides and examination of their heavy metal-binding properties. Chem Pharm Bull 40(10): 2694–2700.

    Article  PubMed  CAS  Google Scholar 

  13. Masaaki K, Tadasu E, Ana RLA, Masashi O, Futoshi Y, Shinji O and Yutaka K (1996) Independent self-assembly of cadmium-binding α-fragment of metallothionein in Escherichia coli without participation of β-fragment. Protein Eng 9(12): 1173–1180.

    Article  Google Scholar 

  14. Kille P, Lees WE, Darke BM, Winge DR, Dameron CT, Stephens PE and Kay J (1992) Sequestration of cadmium and copper by recombinant rainbow trout and human metallothioneins and by chimeric (mermaid and fishman) proteins with interchanged domains. J Biol Chem 267(12): 8042–8049.

    PubMed  CAS  Google Scholar 

  15. Pan AH, Tie F, Yang MZ, Luo JC, Wang ZX, Ding X, Li LY, Chen ZL and Ru BG (1993) Construction of multiple copies of α-domain gene fragment of human liver metallothionein IA in tandem arrays and its expression in transgenic tobacco plants. Protein Eng 6(7): 755–762.

    Article  PubMed  CAS  Google Scholar 

  16. Pan AH, Tie F, Duan ZW, Yang MZ, Wang ZX, Li LY, Chen ZL and Ru BG (1994) α-Domain of human metallothionein IA can bind to metals in transgenic tobacco plants. Mol Gen Genet 242: 666–674.

    Article  PubMed  CAS  Google Scholar 

  17. Xiong Y and Ru BG (1997) Purification and characteristics of recombinant mouse metallothionein-I from Escherichia coli. J Biochem 121: 1102–1106.

    Article  PubMed  CAS  Google Scholar 

  18. Pande J, Vašák M and Kägi JHR (1985) Interaction of lysine residues with the metal thiolate clusters in metallothionein. Biochemistry 24: 6717–6722.

    Article  PubMed  CAS  Google Scholar 

  19. Templeton DM and Cherian MG (1984) Chemical modifications of metallothionein. Preparation and characterization of polymers. Biochem J 221: 569–575.

    PubMed  CAS  Google Scholar 

  20. Cody CW and Huang PC (1993) Metallothionein detoxification function is impaired by replacement of both conserved lysines with glutamines in the hinge between the two domains. Biochemistry 32: 5127–5133.

    Article  PubMed  CAS  Google Scholar 

  21. Pan AH, Ru BG, Li LY, Shen T, Tie F and Wang WQ (1994) Purification andildentification of metallothioneins from rabbit liver induced by zinc. Chinese J Biochem Biophys 24(6): 509–516.

    Google Scholar 

  22. Rupp H and Weser U (1978) Circular Dichroism of metallothioneins: a structural approach. Biochim Biophys Acta 533: 209–226.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Xiong, Y., Zhou, Y., Chen, Y., Ru, B. (1999). Molecular splicing of metallothionein — study on domains of metallothionein. In: Klaassen, C.D. (eds) Metallothionein IV. Advances in Life Sciences. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8847-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8847-9_19

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9799-0

  • Online ISBN: 978-3-0348-8847-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics