Skip to main content

Protostomes

  • Chapter
  • 71 Accesses

Part of the book series: Advances in Life Sciences ((ALS))

Abstract

From general points of environmental and agroeconomic importance, the annelids, and particularly the oligochaetes, have attracted scientific attention for more than a hundred years. Charles Darwin (1881) summarized their natural role concisely: “It may be doubted whether there are many other animals which have played so important a part in the history of the world, as have these lowly organized creatures.” Since the early 1960s a group of researchers headed by E. L. Cooper have investigated the fundamental immune mechanisms of earthworms. Plenty of data has been accumulated up to the present, which has converted the earthworms into a general experimental model of invertebrate immunity, “the mice” of invertebrates. The most recent review of earthworm immunity is by Cooper (1996).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnes, R. D. (1987) Invertebrate Zoology. Saunders College Publishing, Philadelphia.

    Google Scholar 

  • Barnes, R. D. (1989) Diversity of organisms: How much do we know? Amer. Zool. 29: 1075–1084.

    Google Scholar 

  • Bilej, M. (1994a) Cellular defense mechanisms. In: V. Větvička P. Šíma, E. L. Cooper, M. Bilej, and P. Roch (eds): Immunology of Annelids, CRC Press, Boca Raton, pp 167–200.

    Google Scholar 

  • Bilej, M. (1994b) Humoral defense mechanisms. In: V. Větvička P. Šíma E. L. Cooper, M. Bilej, and P. Roch (eds): Immunology of Annelids, CRC Press, Boca Raton, pp 245–261.

    Google Scholar 

  • Bilej, M., Scheerlinck, J.-R, Van den Driessche, T., De Baetselier, P. and Větvička, V (1990a) The flow cytometric analysis of in vitro phagocytic activity of earthworm coelomocytes (Eisenia foetida: Annelida). Cell Biol. Int. Rep. 14: 831–837.

    Google Scholar 

  • Bilej, M., Tučková, L., Rejnek, J. and Větvička, V (1990b) In vitro antigen-binding properties of coelomocytes of Eisenia foetida (Annelida). Immunol. Lett. 26: 183–188.

    PubMed  CAS  Google Scholar 

  • Bilej, M, Větvička, V., Tučková, L., Trebichavsky, I., Koukal, M. and Sima P. (1990c) Phagocytosis of synthetic particles in earthworms. Effect of antigenic stimulation and opsonization. Fol. Biol. 36: 273–280.

    CAS  Google Scholar 

  • Bilej, M., De Baetselier, P., Trebichavsky, I. and Větvička, V. (1991a) Phagocytosis of synthetic particles in earthworms: absence of oxidative burst and possible role of lytic enzymes. Fol. Biol. 37: 227–233.

    CAS  Google Scholar 

  • Bilej, M., Rossmann, P., VandenDriessche, T., Scheerlinck, K.-R, De Baetselier, P., Tučková, L., Větvička, V and Rejnek, J. (1991b) Detection of antigen in the coelomocytes of the earthworm, Eisenia foetida (Annelida). Immunol. Lett. 29: 241–246.

    PubMed  CAS  Google Scholar 

  • Bilej, M., Tučková, L. and Rejnek, J. (1993) The fate of protein antigen in earthworms: study in vitro. Immunol. Lett. 35: 1–6.

    PubMed  CAS  Google Scholar 

  • Bilej, M., Tučková, L. and Rossmann, P. (1994) A new approach to in vitro studies of antigenic response in earthworms. Dev. Comp. Immunol 18: 363–367.

    PubMed  CAS  Google Scholar 

  • Bilej, M., Tučková, L. and Romanovsky A. (1995b) Characterization of the limited specificity of antigen recognition in earthworms. Fol. Microbiol. 40: 436–440.

    CAS  Google Scholar 

  • Bilej, M., Brys, L., Beschin, A., Lucas, R., Vercauteren, E., Hanusova, R. and De Baetselier, P. (1995a) Identification of a cytolytic protein in the coelomic fluid of Eisenia foetida earthworms. Immunol. Lett. 45: 123–128.

    PubMed  CAS  Google Scholar 

  • Brinkhurst, R. O. (1991) Ancestors (Oligochaeta), Mitt. Hamb. Zool. Mus. Inst. 88: 97–110.

    Google Scholar 

  • Cameron, G. R. (1932) Inflammation in earthworms. J. Pathol. Bacteriol. 35: 933–972.

    Google Scholar 

  • Clark, R. B. (1964) Dynamics in Metazoan Evolution, Claredon Press, Oxford.

    Google Scholar 

  • Cooper, E. L. (1973) Evolution of cellular immunity. In: W. Braun and J. Ungar (eds): Non-Specific Factors Influencing Host Resistance, S. Karger, Basel, pp 11–23.

    Google Scholar 

  • Cooper, E. L. (1996) Earthworm immunity. In: B. Rinkevich and W. E. G. Müller (eds): Invertebrate Immunology, Springer-Verlag, Berlin, pp 10–45.

    Google Scholar 

  • Cooper, E. L. and Roch, P. (1994) Immunological profile of annelids: transplantation immunity. In: V. Větvička P. Šíma E. L. Cooper, M. Bilej, and P. Roch (eds): Immunology of Annelids, CRC Press, Boca Raton, pp 201–243.

    Google Scholar 

  • Cooper, E. L. and Stein, E. A. (1981) Oligochaetes. In: N. A. Ratcliffe and A. F. Rowley (eds): Invertebrate Blood Cells, Vol. I, Academic Press, London, pp 75–140.

    Google Scholar 

  • Cooper, E. L., Lemmi, C. A. E. and Moore, T. C. (1974) Agglutinins and cellular immunity in earthworms. Ann. NYAcad. Sei. 234: 34–49.

    CAS  Google Scholar 

  • Cooper, E. L., Cossarizza, A., Suzuki, M. M., Salvioli, A., Capri, M., Quaglino, D. and Franceschi, C. (1995) Autogeneic but not allogeneic earthworm effector coelomocytes kill the mammalian tumor cell target K562. Cell. Immunol. 166: 113–122.

    PubMed  CAS  Google Scholar 

  • Cornec, J. P., Cresp, I, Delye, P., Hoarau, F. and Reynaud, G. (1987) Tissue responses and organogenesis during regeneration in the oligochete Limnodrilus hoffmeisteri (Clap.). Can. J. Zool. 65: 403–414.

    Google Scholar 

  • Cossarizza, A., Cooper, EX., Suzuki, M. M., Salvioli, S., Capri, M., Gri, G., Quaglino, D. and Franceschi, C. (1996) Earthworm leukocytes that are not phagocytic and cross-react with several human epitopes can kill human tumor cell lines. Exp. Cell Res. 224: 174–182.

    PubMed  CAS  Google Scholar 

  • Dales, R. P. and Dixon, L. R. J. (1981) Polychaetes, In: N. A. Ratcliffe and A. F. Rowley (eds): Invertebrate Blood Cells, Vol. I, Academic Press, London, pp 35–74.

    Google Scholar 

  • Dales, R. P. and Kalac, Y. (1992) Phagocytic defence by the earthworm Eisenia foetida against certain pathogenic bacteria. Comp. Biochem. Physiol. [A] 101: 487–490.

    Google Scholar 

  • Darwin. C. R. (1881) The formation of vegetable mould through the action of worms with observations on their habits, John Murray and Co., London, pp 148.

    Google Scholar 

  • Du Pasquier, L. and Duprat D. (1968) Aspects humoraux et cellulaires d’une immunité naturelle non spécifiques chez l’Oligochete Eisenia fetida (Oligochaeta). C. R. Acad. Sei. Paris 266: 538–541.

    Google Scholar 

  • Friedman, M. M. and Weiss, L. (1982) The leucocytic organ of the megascolecid earthworm Amynthas diffringens (Annelida, Oligochaeta). J. Morphol. 174: 251–268.

    Google Scholar 

  • Graham, G. J. (1995) Tandem genes and clustered genes. J. Theor. Biol 175: 71–87.

    PubMed  CAS  Google Scholar 

  • Hill, R. L., Delaney, R., Fellows, R. E. Jr. and Lebovitz, H. E. (1966) The evolutionary origins of the immunoglobulins. Proc. Natl.Acad. Sei. U. S. A. 56: 1762–1769.

    CAS  Google Scholar 

  • Hrzenjak, X, Hrzenjak, M., Kasuba, V., Efenberger-Marinculic, P. and Levanat, S. (1992) A new source of biologically active compounds-earthworm tissue (Eisenia foetida, Lumbricus rube-lus). Comp. Biochem. Physiol. [A] 102: 441–447.

    CAS  Google Scholar 

  • Hrzenjak, M., Kobrehel, D., Levanat, S., Jurin, M. and Hrzenjak, T. (1993) Mitogenicity of the earthworm’s (Eisenia foetida) insulin-like proteins. Comp. Biochem. Physiol [B] 104: 723–729.

    CAS  Google Scholar 

  • Kauschke, E. and Mohrig, W. (1987a) Comparative analysis of hemolytic and hemagglutinating activities in the coelomic fluid of Eisenia foetida and Lumbricus terrestris, (Annelida, Lum-bricidae). Dev. Comp. Immunol. 11: 331–341.

    PubMed  CAS  Google Scholar 

  • Kauschke, E. and Mohrig, W. (1987b) Cytotoxic activity in the coelomic fluid of the annelid Eisenia foetida Sav. J. Comp. Physiol. [B] 157: 77–84.

    CAS  Google Scholar 

  • Kauschke, E., Pagliara, P., Stabili, L. and Cooper, E. L. (1997) Characterization of proteolytic activity in coelomic fluid of Lumbricus terrestris L. (Annelida, Lumbricidae). Comp. Biochem. Physiol. [B] 116: 235–242.

    Google Scholar 

  • Lange, S., Nussler, F., Kauschke, E., Lutsch, G., Cooper, E. L. and Herrmann, A. (1997) Interaction of earthworm hemolysin with lipid membranes requires sphingolipids. J. Biol. Chem.272: 20884–20892.

    PubMed  CAS  Google Scholar 

  • Lassagues, M., Milochau, A., Doignon, F., Du Pasquier, L. and Valembois, P. (1997) Sequence and expression of an Eisenia-fetida-denvGd cDNA clone that encodes the 40-kDa fetidin antibacterial protein. Eur. J. Biochem. 246: 756–762.

    Google Scholar 

  • Laulan, A., Morel, A., Lestage, I, Dellage, M. and Chateaureynaud-Duprat, P. (1985) Evidence of synthesis by Lumbricus terrestris of specific substances in response to an immunization with a synthetic haptens. Immunology 56: 751–758.

    PubMed  CAS  Google Scholar 

  • Laulan, A., Lestage, J., Bouc, A. M. and Chateaureynaud-Duprat, P. (1988) The phagocytic activity of Lumbricus terrestris coelomocytes is enhanced by the vertebrate opsonins: IgG and complement C3b fragment. Dev. Comp. Immunol. 12: 269–278.

    PubMed  CAS  Google Scholar 

  • Mohrig, W. and Kauschke, E. (1984) Rosette formation of the coelomocytes of the earthworm Lumbricus terrestris L. with sheep erythrocytes. Dev. Comp. Immunol. 8: 471–476.

    PubMed  CAS  Google Scholar 

  • Mohrig, W., Eue, I., Kauschke, E. and Hennicke, F. (1996) Crossreactivity of hemolytic and hemagglutinating proteins in the coelomic fluid of Lumbricidae (Annelida). Comp. Biochem.Physiol [A] 115: 19–30.

    CAS  Google Scholar 

  • Nagasawa, H., Sawaki, K., Fujii, Y., Kobayashi, M., Segawa, T., Suzuki, R. and Inatomi, H. (1991) Inhibition by lombrieine from earthworm (Lumbricus terrestris) of the growth of spontaneous mammary tumours in SHN mice. Anticanc. Res. 11: 1061–1064.

    CAS  Google Scholar 

  • Ohno, S. (1970) Evolution by Gene Duplication. Springer, New York.

    Google Scholar 

  • Peaucellier, G. (1983) Purification and characterization of proteases from the polychaete annelid Sabellaria alveolata L. Eur. J. Biochem. 136: 435–445.

    PubMed  CAS  Google Scholar 

  • Rejnek, J., Tučková, L., Sima, P. and Bilej, M. (1993) The fate of protein antigen in earthworms: study in vivo. Immunol. Lett. 36: 131–136.

    PubMed  CAS  Google Scholar 

  • Roch, P. (1979) Protein analysis of earthworm coelomic fluid: 1. Polymorphic system of the natural hemolysin of Eisenia fetida andrei. Dev. Comp. Immunol. 3: 599–608.

    PubMed  CAS  Google Scholar 

  • Roch, P., Davant, N. and Lassegues, M. (1984) Isolation of agglutinins from lysins in earthworm coelomic fluid by gel filtration followed by chromatofocusing. J. Chromatogr. 290: 231–235.

    CAS  Google Scholar 

  • Roch, P., Canicatti, C. and Valembois, P. (1989) Interactions between earthworm hemolysins and sheep red blood cell membranes. Biochim. Biophys. Acta 983: 193–198.

    PubMed  CAS  Google Scholar 

  • Roch, P., Stabili, L. and Pagliara, P. (1991) Purification of three serine proteases from the coelomic cells of earthworms (Eisenia fetida). Comp. Biochem. Physiol. [B] 98: 597–602.

    Google Scholar 

  • Rossmann, P., Bilej, M., Tučková, L., Stary, V and Kofronova, O. (1997) Lesion of leukocytes, erythrocytes, and mesothelial cells by the coelomic fluid of Eisenia foetida earthworm. Fol. Microbiol. 42: 409–416.

    CAS  Google Scholar 

  • Sawyer, R. T. and Fitzgerald, S. W. (1981) Hirudineans. In: N. A. Ratcliffe and A. F. Rowley (eds): Invertebrate Blood Cells, Vol. 1, Academic Press, London, pp 141–159.

    Google Scholar 

  • Sima, P. (1994a) A survey of the evolution of fundamental body constructions in relation to immunological phenomena. In: V. Větvička P. Šíma, E. L. Cooper, M. Bilej, and P. Roch (eds): Immunology of Annelids, CRC Press, Boca Raton, pp 27–39.

    Google Scholar 

  • Sima, P. (1994b) Phylogeny and classification of annelids. In: V. Větvička P. Šíma, E. L. Cooper, M. Bilej, and P. Roch (eds): Immunology of Annelids, CRC Press, Boca Raton, w pp 13–25.

    Google Scholar 

  • Sima, P. (1994c) Annelid coelomocytes and hemocytes: roles in cellular immune reactions. In: V. Větvička P. Šíma, E. L. Cooper, M. Bilej, and P. Roch (eds): Immunology of Annelids, CRC Press, Boca Raton, pp. 115–165.

    Google Scholar 

  • Singer, S. J. and Doolitle, R. F. (1966) Antibody active sites and immunoglobulin molecules. Science 153: 13–25.

    PubMed  CAS  Google Scholar 

  • Sinkora, M., Bilej, M., Tučková, L. and Romanovsky, A. (1993) Hemolytic function of opsonizing proteins of earthworm’s coelomic fluid. Cell Biol. Int. 10: 935–939.

    Google Scholar 

  • Sinkora, M., Bilej, M, Drbal, K. and Tučková, L. (1995) Hemolytic function of opsonin-like molecules in coelomic fluid of earthworms. Adv. Exp. Med. Biol. 371: 341–342.

    Google Scholar 

  • Stein, E. A. and Cooper, E. L. (1981) The role of opsonins in phagocytosis by coelomocytes of the earthworm Lumbricus terrestris. Dev. Comp. Immunol. 5: 415–425.

    PubMed  CAS  Google Scholar 

  • Stein, E. A and Cooper, E. L. (1983) Carbohydrate and glycoprotein inhibitors of naturally occurring and induced agglutinins in the earthworm Lumbricus terrestris. Comp. Biochem.Physiol. [B] 76: 197–206.

    Google Scholar 

  • Stein, E. A., Avtalion, R. R. and Cooper, E. L. (1977) The coelomocytes of the earthworm Lum-bricus terrestris. J. Morphol. 153: 467–476.

    PubMed  CAS  Google Scholar 

  • Stein, E. A., Younai, S. and Cooper, E. L. (1986) Bacterial agglutinins of the earthworm, Lum-bricus terrestris. Comp. Biochem. Physiol. [B] 84: 409–416.

    Google Scholar 

  • Stein, E. A., Younai, S. and Cooper, E. L. (1990) Separation and partial purification of agglutinins from coelomic fluid of the earthworm, Lumbricus terrestris. Comp. Biochem. Physiol.[B] 97: 701–705.

    Google Scholar 

  • Stephenson, J. (1924) On the blood glands of earthworms of the genus Pheretima. Proc. R. Soc.B. 97: 177–209.

    Google Scholar 

  • Suzuki, M. M. and Cooper, E. L. (1995) Allogeneic killing by earthworm effector cells. Nat.Immun. 14: 11–19.

    PubMed  CAS  Google Scholar 

  • Takahashi, T., Iwase, T., Kobayashi, K., Rejnek, J., Mestecky, J. and Moro, I. (1995): Phylogeny of the immunoglobulin joining (J) chain. In: J. Mestecky, M. W. Rüssel, S. Jackson, S. M. Michalek, H. Tlaskalova-Hogenova, and J. Sterzl (eds): Advances in Mucosal Immunity, Part A, Plenum Press, New York, pp 353–356.

    Google Scholar 

  • Tučková, L. and Bilej, M. (1994) Antigen processing in earthworms. Immunol. Lett. 41: 273–277.

    PubMed  Google Scholar 

  • Tučková, L. and Bilej, M. (1996) Mechanisms of antigen processing in invertebrates: Are there receptors?. In: E. L. Cooper (ed.): Advances in Comparative and Environmental Physiology, Vol. 23, Invertebrate Immune Responses: Cells and Molecular Products, Springer-Verlag, Berlin, pp 41–72.

    Google Scholar 

  • Tučková, L., Rejnek, J. and Sima, P. (1988) Response to parenteral stimulation in earthworms L. terrestris and E. foetida. Dev. Comp. Immunol. 12: 287–296.

    PubMed  Google Scholar 

  • Tučková, L., Rejnek, J., Sima, P. and Ondrejova, R. (1986) Lytic activities in coelomic fluid of Eisenia foetida and Lumbricus terrestris. Dev. Comp. Immunol. 10: 181–189.

    PubMed  Google Scholar 

  • Tučková, L., Rejnek, J., Bilej, M., Hajkova, H. and Romanovsky, A. (1991a) Monoclonal antibodies to antigen binding protein of annelids (Lumbricus terrestris). Comp. Biochem. Physiol. [B], 100: 19–23.

    Google Scholar 

  • Tučková, L., Rejnek, J., Bilej, M. and Pospisil, R. (1991b) Characterization of antigen-binding protein in earthworms Lumbricus terrestris and Eisenia foetida. Dev. Comp. Immunol 15: 263–268.

    PubMed  Google Scholar 

  • Tučková, L., Bilej, M. and Rejnek J. (1995) The fate of protein antigen in Annelids-in vivo and in vitro studies. In: J. Mestecky, M. W. Rüssel, S. Jackson, S. M. Michalek, H. Tlaskalova-Hogenova, and J. Sterzl (eds): Advances in Mucosal Immunity, Part A, Plenum Press, New York, pp 335–339.

    Google Scholar 

  • Valembois, P., Roch, P. and Du Pasquier, L. (1973) Degradation in vitro de protéine entrangere par les macrophages du Lombricien Eisenia fetida Sav. C. R. Acad. Sei. Paris Ser. III 277: 57–60.

    CAS  Google Scholar 

  • Valembois, P., Roch, P. and Boiledieu, D. (1980) Natural and induced cytotoxicities in Sipun-culids and Annelids. In: M. J. Manning (ed.): Phylogeny of Immunological Memory, Else-vier/North Holland, Amsterdam, pp 47–55.

    Google Scholar 

  • Valembois, P., Roch, P., Lassagues, M. and Cassand, P. (1982) Antibacterial activity of the hemolytic system from the earthworm Eisenia fetida andrei. J. Invertebr. Pathol. 40: 21–27.

    Google Scholar 

  • Valembois, P., Roch, P. and Lassegues, M. (1986) Antibacterial molecules in annelids. In: M. Brehelin (ed.): Immunity in Invertebrates, Springer Verlag, Berlin, pp 74–93.

    Google Scholar 

  • Valembois, P., Lassegues, M. and Roch, P. (1992) Formation of brown bodies in the coelomic cavity of the earthworm Eisenia foetida andrei and attendant changes in shape and adhesive capacity of constitutive cells. Dev. Comp. Immunol. 16: 95–101.

    PubMed  CAS  Google Scholar 

  • Valembois, P., Seymour, J. and Lassegues, M. (1994) Evidence of lipofuscin and melanin in the brown body of the earthworm Eisenia fetida andrei. Cell Tissue Res. 277: 183–188.

    CAS  Google Scholar 

  • Vaillier, I, Cadoret, M. A., Roch, P. and Valembois, P. (1985) Protein analysis of earthworm coelomic fluid. III. Isolation and characterization of several bacteriostatic molecules from Eisenia fetida andrei. Dev. Comp. Immunol. 9: 11–20.

    PubMed  CAS  Google Scholar 

  • Vetvicka, V., Sima, P., Cooper, EX., Bilej, M. and Roch, P. (1994) Immunology of Annelids, CRC Press, Boca Raton.

    Google Scholar 

  • Voburka, Z., Maser, M., Větvička, V., Bilej, M., Baudys, M. and Fusek, M. (1992) New trypsin inhibitors are present in coelomic fluid of Lumbricus terrestris. Biochem. Int. 27: 679–685.

    PubMed  CAS  Google Scholar 

  • Anderson, D. T. (1973) Embryology and Phylogeny in Annelids and Arthropods. Pergamon Press, Oxford.

    Google Scholar 

  • Attygalle, A. B., Xu, S. C. and Meinwald, J. (1993) Defensive secretion of the millipede Flori-dobolus penneri. J. Natural Products 56: 1700–1706.

    CAS  Google Scholar 

  • Barnes, R. D. (1987) Invertebrate Zoology, 5th Edition. Saunders College Publ., Philadelphia.

    Google Scholar 

  • Barnes, R. D. (1989) Diversity of organisms: How much do we know?. Amer. Zool. 29: 1075–1084.

    Google Scholar 

  • Boore, J. L., Collins, T. M., Stanton, D., Daehler, L. L. and Brown, W. M. (1995) Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements. Nature 376: 163–165.

    PubMed  CAS  Google Scholar 

  • Brusca, R. C. and Brusca, G. J. (1990) Invertebrates. Sinauer, Sunderland, MA.

    Google Scholar 

  • Edwin, T. L. (1983) Beetles and other insects of tropical forest canopies at Manaus, Brazil, sampled by insecticidal fogging. In: S. L. Sutton, T. C. Whitmore and A. C. Chadwick (eds): Tropical Rain Forest: Ecology and Management Vol. 2, Blackwell Sei. Publ.,Oxford, pp 59–

    Google Scholar 

  • Kim, C. B., Moon, S. Y., Gelder, R. S. and Kim, W. (1996) Phylogenetic relationship of annelids, molluscs, and arthropods: evidence from molecules and morphology. J. Mol. Evol. 43: 207–215.

    PubMed  CAS  Google Scholar 

  • Lovtrup, S. (1977) The Phylogeny of Vertebrata. J. Wiley and Sons, London.

    Google Scholar 

  • Manton, S. M. (1977) The Arthropoda: Habits, Functional Morphology, and Evolution. Clarendon Press, Oxford.

    Google Scholar 

  • May, R. M. (1994) Biological diversity: differences between land and sea,. Phil. Trans. R. Soc. London B 343: 105–111.

    Google Scholar 

  • Ratcliffe, N. A., White, K. N., Rowley, A. F. and Walters, J. B. (1982) Cellular defense systems of the arthropoda. In: N. Cohen and M. M. Sigel (eds): The Reticuloendothelial System, Vol. 3, Plenum Press, New York, pp 167–255.

    Google Scholar 

  • Ravindranath, M. H. (1981) Onychophorans and myriapods. In: N. A. Ratcliffe and A. F. Rowley v (eds): Invertebrate Blood Cells, Vol. 2, Academic Press, London, pp 327–354.

    Google Scholar 

  • Sima, P. and Vetvicka, V (1990) Evolution of Immune Reactions. CRC Press, Boca Raton.

    Google Scholar 

  • Valentine, J. W., Erwin, D. H. and Jablonski, D. (1996) Developmental evolution of metazoan bodyplans: the fossil evidence. Dev. Biol. 173: 373–381.

    PubMed  CAS  Google Scholar 

  • van der Walt, R. and McClain, E. (1990) Phylogeny of arthropod immunity. An inducible humoral response in the Kalahari millipede, Triaenostreptus triodus (Attems). Naturwissensch. 77: 189–190.

    Google Scholar 

  • Zylander, W. E. R. and Neverman, L. (1990) Antibacterial activity in the hemolymph of myriapods (Arthropoda). J. Invertebr. Pathol. 56: 206–214.

    Google Scholar 

  • Armstrong, RB. (1979) Motility of the Limulus blood cells. J. Cell Sei. 37: 169–170.

    CAS  Google Scholar 

  • Armstrong, RB. (1991) Cellular and humoral immunity in the horseshoe crab, Limulus poly-phemus. In: A. R Gupta (ed.): Immunology of Insects and other Arthropods, CRC Press, Boca Raton, pp 3–17.

    Google Scholar 

  • Armstrong, RB. and Levin, J. (1979) In vitro phagocytosis by Limulus blood cells. J. Invertebr.Pathol 34: 145–151.

    PubMed  CAS  Google Scholar 

  • Armstrong, RB., Armstrong, M. T. and Quigley, J. R (1993) Involvement of a2-macroglobulin and C-reactive protein in a complement-like hemolytic system in the arthropod, Limulus polyphemus. Mol Immunol. 30: 929–934.

    PubMed  CAS  Google Scholar 

  • Armstrong, RB., Melchior, R. and Quigley, J. R (1996) Humoral immunity in long-lived arthropods. J. Insect Physiol 42: 53–64.

    CAS  Google Scholar 

  • Binnington, K. C. and Obenchain, F. D. (1982) Structure and function of the circulatory, nervous, and neuroendocrine systems in ticks. In: F. D. Obenchain and R. L. Galun (eds): Physiology of Ticks, Pergamon Press, Oxford, pp 351–398.

    Google Scholar 

  • Bishayee, S. and Dorai, D. T. (1980) Isolation and characterization of a sialic acid-binding lectin (carcinoscorpin) from Indian horseshoe crab Carcinoscorpius rotunda cauda. Biochim. Bio-phys.Acta 623: 89–97.

    CAS  Google Scholar 

  • Brinton, L. R and Burgdorfer, W. (1971) Fine structure of normal hemocytes in Dermacentror andersoni Stiles (Acari: Ixodidae). J. Parasitol. 57: 1110–1127.

    PubMed  CAS  Google Scholar 

  • Deevey, G. B. (1941) The blood cells of the Haitan tarantula and their relation to the moulting cycle. J. Morphol 68: 475–491.

    Google Scholar 

  • Eggenberger, L. R., Lamoreaux, W. J. and Coons, L. B. (1990) Hemocytic encapsulation of implants in the tick Dermatocentor variabilis. Exp. Appl. Acarol. 9: 279–287.

    PubMed  CAS  Google Scholar 

  • E1 Shoura, S. M. (1986) Fine structure of hemocytes and nephrocytes of Argas (Persiciargas) arboreus (Ixodoidea: Argasidae). J. Morphol. 189: 17–24.

    Google Scholar 

  • Enghild, J. J., Thogersin, LB., Salvesen, G. Fey, G. H., Figler, N. L., Gonias, S. L. and Pizzo, S. V. (1990) a2-Macroglobulin from Limulus polyphemus exhibits proteinase inhibitory activity and participates in a hemolytic system. Biochemistry 29: 10070–10080.

    PubMed  CAS  Google Scholar 

  • Ey, RL. and Jenkin, C. R. (1982) Molecular basis of self/non-self discrimination in the inverte-brata. In: N. Cohen and M. M. Sigel (eds): The Reticuloendothelial System, Vol. 3, Plenum Press,New York, pp 321–3

    Google Scholar 

  • Fischer, E., Khang, N. Q., Letendre, G. and Brossmer, R. (1994) A lectin from the Asian horseshoe crab Tachypleus tridentatus: purification, specificity and interaction with tumour cells. Glycoconjugate J. 11: 51–58.

    CAS  Google Scholar 

  • Franz, V. (1904) Über die Structur des Herzens und die Entstehung von Blutzellen in Spinnen, Zool Anz. 27: 192–204.

    Google Scholar 

  • Iwanaga, S., Miyata, T., Tokunaga, F. and Muta, T. (1992) Molecular mechanism of hemolymoh clotting system in Limulus. Thrombosis Res. 68: 1–32.

    CAS  Google Scholar 

  • Jakobsen, P. P. and Suhr-Jessen, P. (1990) The horseshoe crab Tachypleus tridentatus has two kinds of hemocytes: granulocytes and plasmocytes. Biol. Bull. 178: 55–64.

    Google Scholar 

  • Kehoe, J. M., Kaplan, R. and Steven, S. L. L. (1979) Functional implications of the covalent structure of limulin: An overview. In: E. Cohen (ed.): Biomédical Applications of the Horseshoe Crab (Limulidae), Alan R. Liss, New York, pp 617–630.

    Google Scholar 

  • Kollmann, M. (1908) Recherches sur les leucocytes et le tissue lymphoide des Invertébrés. Ann. Sei. Nat. Zool. 8: 1–240.

    Google Scholar 

  • Kollmann, M. (1910) Notes sur les functions de la glande lymphatique des scorpionides. Bull Soc. Zool France 35: 25–30.

    Google Scholar 

  • Kuhn, K. H. and Haug, T. (1994) Ultrastructural, cytochemical, and immunocytochemical characterization of haemocytes of the hard tick Ixodes ricinus, (Acari; Chelicerata). Cell Tissue Res. 227: 93–504.

    Google Scholar 

  • Levin, J. (1967) Blood coagulation and endotoxin in invertebrates. Fed. Proc. 26: 1707–1712.

    Google Scholar 

  • Levin, J. (1985) The role of amebocytes in the blood coagulation mechanism of the horseshoe crab, Limulus polyphemus. In: W. D. Cohen (ed.): Blood Cells of Marine Invertebrates, Vol. 6, Alan R. Liss, New York, pp 145–163.

    Google Scholar 

  • Levin, J. and Bang, F. B. (1964) The role of endotoxin in the extracellular coagulation of Limulus blood. Bull Johns Hopkins Hosp. 115: 265–274.

    PubMed  CAS  Google Scholar 

  • Loeb, L. (1902) On the blood lymph cells and inflammatory processes of Limulus. J. Med. Res. 7: 145–165.

    PubMed  CAS  Google Scholar 

  • Monta, T., Ohtsubo, S., Nakamura, T., Iwanaga, S., Ohashi, K. and Niwa, M. (1985) Isolation and biological activities of Limulus anticoagulant (anti-LPS) which interacts with lipopoly-saccharide (LPS). J. Biochem. 97: 1611–1620.

    Google Scholar 

  • Mürer, E. H., Levin, J. and Holme, R. (1975) Isolation and studies of the granules of the amoebocytes of Limulus polyphemus, the horseshoe crab. J. Cell Physiol. 86: 533–542.

    PubMed  Google Scholar 

  • Muta, T., Fujimoto, T., Nakajima, H. and Iwanaga, S. (1990) Tachyplesins isolated from haemocytes of Southeast Asian horseshoe crab (Carcinoscorpius rotundicauda and Tachy-pleus gigas): identification of a new tachyplesin, tachyplesin III, and a processing immediate of its precursors. J. Biochem. 108: 261–266.

    PubMed  CAS  Google Scholar 

  • Nakamura, T., Furunaka, H., Miyata, T., Tokunaga, F., Muta, T. and Iwanaga, S. (1988) Tachyplesin, a class of antimicrobial peptides from the haemocytes of the horseshoe crab, Limulus polyphemus. J. Biol. Chem. 263: 16709–16713.

    PubMed  CAS  Google Scholar 

  • Nellaiappan, K. and Sugumaran, M. (1996) On the presence of prophenoloxidase in the hemo-lymph of the horseshoe crab, Limulus. Comp. Biochem. Physiol. [B] 113: 163–168.

    CAS  Google Scholar 

  • Nowak, T. P. and Barondes, S. H. (1975) Agglutinin from Limulus polyphemus. Biochim. Bio-phys. Acta 393: 115–123.

    CAS  Google Scholar 

  • Ratcliffe, N. A., White, K. H., Rowley, A. F. and Walters, J. B. (1982) Cellular defense systems of the arthropoda. In: N. Cohen and M. M. Sigel (eds): The Reticuloendothelial System, Vol. 3, Plenum Press, New York, pp 167–215.

    Google Scholar 

  • Ravindranath, M. H. (1974) The hemocytes of a scorpion Palamnaeus swammerdami. J. Mor-phol. 144: 1–10.

    CAS  Google Scholar 

  • Roche, A. C. and Monsigny, M. (1974) Purification and properties of limulin: A lectin (agglutinin) from hemolymph of Limulus polyhemus. Biochim. Biophys. Acta 371: 242–254.

    PubMed  CAS  Google Scholar 

  • Roche, A. C. and Monsigny, M. (1979) Limulin Limulus polyphemus lectin): Isolation, physico-chemical properties, sugar specificity and mitogenic activity. In: E. Cohen (ed.): Biomédical Applications of the Horseshoe Crab (Limulidae), Alan R. Liss, New York, pp 603–616.

    Google Scholar 

  • Seitz, K. A. (1972) Zur Histologie und Feinstruktur des Herzens und der Hämazyten von Cupi-ennius salei Keys (Araneae, Ctenidae). II. Zur Funktionsmorphologie der Phagocyten. Zool. Jahrb. Anat. 89: 385–397.

    Google Scholar 

  • Sherman, R. G. (1981) Chelicerates. In: N. A. Ratcliffe and A. F. Rowley (eds): Invertebrate Blood Cells, Vol. 2, Academic Press, London, pp 355–384.

    Google Scholar 

  • Shirodkar, M. V, Warwick, A. and Bang, F. B. (1960) The in vitro reaction of Limulus amoebocytes to bacteria. Biol. Bull. 118: 324–337.

    Google Scholar 

  • Sima, P. and Větvička, V. (1990) Evolution of Immune Reactions. CRC Press, Boca Raton.

    Google Scholar 

  • Söderhäll, K., Levin, J. and Armstrong, P. B. (1985) The effect of β-1,3 glucans on blood coagulation and amebocyte release in the horseshoe crab Limulus polyphemus. Biol, Bull. 169: 661–674.

    Google Scholar 

  • Stagner, J. I. and Redmond, J. R. (1975) The immunological mechanisms of the horseshoe crab, Limulus polyphemus. Mar. Fish. Rev. 37: 11–19.

    Google Scholar 

  • Suhr-Jessen, P., Baek, L. and Jakobsen, P. P. (1989) Microscopical, biochemical and immunological studies of the immune defense system of the horseshoe crab, Limulus polyphemus. Biol. Bull. 176: 290–300.

    Google Scholar 

  • Tsuboi, I., Matsukawa, M., Sato, N. and Kimura, S. (1993a) Isolation and characterization of a sialic acid-specific binding lectin from the hemolymph of Asian horseshoe crab, Tachypleus tridentatus. Biochem. Biophys. Acta 1156: 255–262.

    PubMed  CAS  Google Scholar 

  • Tsuboi, I., Yanagi, K., Wada, K., Kimura, S. and Ohkuma, S. (1993b) Isolation and characterization of a novel sialic acid-specific lectin from hemolymph ofLimulus polyphemus. Comp. Biochem. Physiol. [B] 104: 19–26.

    Google Scholar 

  • Tsuboi, I., Yanagi, K., Matsukawa, M., Kubota, H. and Yamakawa, T. (1996) Isolation of a novel lectin from the hemolymph of horseshoe crabs Limulus polyphemus and its hemagglutinating properties. Comp. Biochem. Physiol. [B] 113: 137–142.

    Google Scholar 

  • Yeo, D. S. A., Ding, J. L. and Ho, B. (1993) An antimicrobial factor from the plasma of the horseshoe crab, Carcinoscorpius rotindicauda. Microbios 73: 45–58.

    CAS  Google Scholar 

  • Aono, H., Diaz, G. G. and Mori, K. (1994a) Granular cells recognize non-self signals and trigger the clotting reaction of hemocytes in vitro in the spiny lobster, Panulirus japonicus. Comp. Biochem. Physiol [A] 107: 37–42.

    Google Scholar 

  • Aono, H., Diaz, G. G. and Mori, K. (1994b) Cytolysis of hemocytes induced by serum and plasma in three crustacenas, Panulirus japonicus, Panaeus japonicus and Homarus ameri-canus. Dev. Comp. Immunol. 18: 265–275.

    PubMed  CAS  Google Scholar 

  • Aspan, A. and Söderhäll, K. (1991) Purification of peophenoloxidase from crayfish blood cells, and its activation by an endogenous serine proteinase. Insect Biochem. 21: 363–373.

    CAS  Google Scholar 

  • Aspan, A., Hall, M. and Söderhäll, K. (1990) The effect of endogenous proteinase inhibitors on the prophenoloxidase activating enzyme, a serine proteinase from crayfish haemocytes. Insect Biochem. 20: 485–492.

    CAS  Google Scholar 

  • Bauchau, A. G. (1981) Crustaceans. In: N. A. Ratcliffe and A. E Rowley (eds): Invertebrate Blood, Vol. 2, Academic Press, London, pp 385–420.

    Google Scholar 

  • Bauchau, A. G. (1986) Données récentes sur les hemocytes des crustacés. Cah. Biol. Mar. 28: 279–287.

    Google Scholar 

  • Bauchau, A. G. and Plaquet, J. C. (1973) Variations du nombre des hemocytes chez les crustacés brachyoures. Crustaceana 24: 215–223.

    Google Scholar 

  • Bell, K. L. and Smith, V. J. (1993) tn vitro Superoxide production by hyaline cells of the shore crab Carcinus maenas (L.). Dev. Comp. Immunol. 17: 211–219.

    PubMed  CAS  Google Scholar 

  • Cantacuzene, J. (1912) Sur certains anticorps naturels observes chez Eupagurus prideauxii. Compt. Rendus Soc. Biol. 73: 663–683.

    Google Scholar 

  • Charmantier-Daures, M. (1973) Activité de l’organe léucopoiétique de Pachygrapsus marmo-ratus au counts du cycle d’internue: Influence possible chez hormones pedonaulaires. Bull.Soc. Zool. France 98: 221–231.

    Google Scholar 

  • Cerenius, L. and Söderhäll, K. (1995) Crustacean immunity and complement; a premature comparison?. Amer. Zool. 35: 60–67.

    Google Scholar 

  • Chattopadhyay, T. and Chatterjee, B. P. (1993) A low-molecular weight lectin from the edible crab Scylla serrata hemolymph: purification and partial characterization. Biochem. Arch. 9: 65–72.

    CAS  Google Scholar 

  • Cuénot, L. (1897) Les globules sanquins et les organes lymohoides des invertébrés (Revue critique et nouvelles recherches). Arh. Anat. Microscop. Exp. 1: 153–192.

    Google Scholar 

  • Cuénot, L. (1905) L’organe phagocytaire des Crustacés Décapodes. Arch. Zool. Exp. Gen. Ser.4: 1–16.

    Google Scholar 

  • Drach, P. (1939) Mue at cycle d’intermue chez les crustacés décapodes. Ann. Inst. Oceanogr.19: 103–391.

    Google Scholar 

  • Duvic, B. and Soderhäll, K. (1990) Purification and characterization of a /?.-l,3-glucan binding protein from the plasma of the crayfish Pacifastacus lenieusculus. J. Biol. Chem. 265: 9332–9337.

    Google Scholar 

  • Fontaine, C. T. and Lightner, D. V (1974) Observations on the phagocytosis and elimination of carmine particles injected into the abdominal musculature of the white shrimp, Penaeus seti-ferus. J. Invertebr. Pathol. 24: 141–148.

    PubMed  CAS  Google Scholar 

  • Ghiretti-Magaldi, A., Milanesi, C. and Tognon, G. (1977) Haemopoiesis in Crustacea, Deca-poda: Origin and production of haemocytes and cyanocytes of Carcinus maenas. Cell Differ. 6: 167–186.

    Google Scholar 

  • Gupta, A. P. (1979) Arthropod hemocytes and phylogeny. In: A. P. Gupta (ed.): Arthropod Phy-logeny, Van Nostrand-Reinhold, New York, pp 669–679.

    Google Scholar 

  • Guzman, M.-A., Ochoa, J. L. and Vargas-Albores, F. (1993) Haemolytic activity in the brown shrimp (Penaeus californiensis Holmes) haemolymph. Comp. Biochem. Physiol. [A] 106: 271–275.

    Google Scholar 

  • Hall, M., Söderhäll, K. and Sottrup-Jensen, L. (1989) Amino acid sequence around the thioester of a a2-macroglobulin from plasma of the crayfish Pacifastacus leniusculus. FEBS Lett. 254: 11–114.

    Google Scholar 

  • Hamann, A. (1975) Stress induced changes in cell-titre in crayfish haemolymph. Z. Natur-forsch. 30c: 850.

    CAS  Google Scholar 

  • Hose, J. E., Martin, G. G. and Gerard, A. S. (1990) A decapod hemocyte classification scheme integrating morphology, cytochemistry, and function. Biol. Bull. 178: 33–45.

    Google Scholar 

  • Hose, J. E., Martin, G. G., Tiu, S. and McKrell, N. (1992) Patterns of hemocyte production and release throughout the molt cycle in the penaeid shrimp Sicyonia ingentis. Biol. Bull. 183: 185–189.

    Google Scholar 

  • Johnson, P. T. (1987) A review of fixed phagocytic and pinocytic cells of decapod crustaceans, with remarks on hemocytes. Dev. Comp. Immunol. 11: 679–704.

    PubMed  CAS  Google Scholar 

  • Kobayashi, M., Johansson, M. W. and Söderhäll, K. (1990) The 76 kD cell-adhesion factor from crayfish hemocyte promotes encapsulation in vitro. Cell Tissue Res. 260: 13–18.

    CAS  Google Scholar 

  • Kollmann, M. (1908) Recherches sur les leucocytes et le tissue lymphoide des Invertébrés. Ann. Sei. Nat. Zool. 8: 1–240.

    Google Scholar 

  • Kopacek, P., Grubhoffer, L. and Söderhäll, K. (1993) Isolation and characterization of a hemag-glutinin with affinity for lipopolysaccharide from plasma of the crayfish Pacifastacus lenius-culus. Dev. Comp. Immunol. 17: 407–418.

    PubMed  CAS  Google Scholar 

  • Lackie, A. M. (1988) Immune mechanism in insects. Parasitol. Today 4: 98–105.

    PubMed  CAS  Google Scholar 

  • Lanz, H., Hernandez, S., Garrido-Guerrero, E., Tsutsumi, V and Arechiga, H. (1993a) Phenol-oxidase system activation in the crayfish Procambarus clarki. Dev. Comp. Immunol. 17: 399–406.

    PubMed  CAS  Google Scholar 

  • Lanz, H., Tsutsumi, V. and Arechiga, H. (1993b) Morphological and biochemical characterization of Procambarus clarki blood cells. Dev. Comp. Immunol. 17: 389–397.

    PubMed  CAS  Google Scholar 

  • Levin, J. (1967) Blood coagulation and endotoxin in invertebrates. Fed. Proc. 26: 1707–1712.

    Google Scholar 

  • Loret, S. M. (1993) Hemocyte differentiation in the shore crab (Carcinus maenas) could be accompanied by a loss of glycogenosynthesis capability. J. Exp. Zool. 2267: 548–555.

    Google Scholar 

  • Martin, G. G. and Hose, J. E. (1991) Vascular elements of blood (hemolymph). In: F. W. Harrison and A. G. Humes (eds): Microscopic Anatomy of Invertebrates, Wiley-Liss, New York, pp 117–146.

    Google Scholar 

  • Martin, G. G., Hose, J. E., Omori, S., Chong, C., Hoodboy, T. and McKrell, N. (1991) Localization and roles of coagulogen and transglutaminase in hemolymph coagulation in decapod crustaceans. Comp. Biochem. Physiol. [B] 100: 517–52

    Google Scholar 

  • Martin, G. G., Poole, D., Poole, C., Hose, J. E., Arias, M., Reynolds, L., McKrell, N. and Whang, A. (1993) Clearance of bacteria injected into the hemolymph of the penaeid shrimp, Sicyonia ingentis. J. Invertebr. Pathol. 62: 308–315.

    Google Scholar 

  • Muta, T., Miyata, T., Misumi, Y., Tokunaga, F., Nakamura, T., Toh, Y, Ikehara, Y. and Iwanaga, S. (1991) An endotoxin sensitive serine protease zymogen with a mosaic structure of complement-like, epidermal growth factor-like and lectin like domains. J. Biol. Chem. 266: 6554–6561.

    PubMed  CAS  Google Scholar 

  • Paterson, W. D., Stewart, J. E. and Zwicker, B. M. (1976) Phagocytosis as a cellular immune mechanism in the American lobster, Homarus americanus. J. Invertebr. Pathol. 27: 95–1

    PubMed  CAS  Google Scholar 

  • Ratcliffe, N. A., White, K. H., Rowley, A. F. and Walters, J. B. (1982) Cellular defense systems of the arthropoda. In: N. Cohen and M. M. Sigel (eds): The Reticuloendothelial System, Vol. 3, Plenum Press, New York, pp 167–255.

    Google Scholar 

  • Ratner, S. and Vinson, R. B. (1983) Phagocytosis and encapsulation: Cellular immune response in Arthropoda. Am. Zool. 23: 185–194.

    Google Scholar 

  • Ravindranath, M. H. (1977) The circulating haemocyte population of the mole crab Emerita (=Hippa) asiatica (Milne-Edwards). Biol. Bull. 152: 415–423.

    Google Scholar 

  • Sagrista, E. and Durfort, M. (1990) Ultrastructural study of hemocytes and phagocytes associated with hemolymphatic vessels in the hepatopancreas of Palaemonetes zariquieyi (Crustacea, Decapoda). J. Morphol. 206: 173–180.

    Google Scholar 

  • Sequeira, T., Tavares, D. and Arala-Chaves, M. (1996) Evidence for circulating hemocyte proliferation in the shrimp Penaeus japonicus. Dev. Comp. Immunol. 20: 97–104.

    PubMed  CAS  Google Scholar 

  • Sima, P. and Větvička, V (1990) Evolution of Immune Reactions. CRC Press, Boca Raton.

    Google Scholar 

  • Sima, P. and Větvička, V (1992) Evolution of immune accessory functions. In: L. Fornůsek and V Větvička (eds): Immune System Accessory Cells, CRC Press, Boca Raton, pp 1–55.

    Google Scholar 

  • Sloan, B., Yocum, C. and Clem, L. W. (1975) Recognition of self from non-self in crustaceans. Nature 258: 521–523.

    PubMed  CAS  Google Scholar 

  • Smith, V. J. and Ratcliffe, N. A. (1978) Host defense reactions of the shore crab, Carcinus maenas (L.) in vitro. J. Marine Biol. Assoc. U. K. 58: 367–379.

    Google Scholar 

  • Smith, VJ. and Ratcliffe, N. A. (1980a) Cellular reactions of the shore crab Carcinus maenas: In vivo hemocytic and histopathological responses to injected bacteria. J. Invertebr. Pathol. 35: 65–74.

    Google Scholar 

  • Smith, VI, and Ratcliffe, N. A. (1980b) Host defense reactions of the shore crab, Carcinus mae-nas (L.): clearance and distribution of injected test particles. J. Marine Biol Assoc. U. K.60: 89–102.

    Google Scholar 

  • Smith, VJ. and Söderhäll, K. (1983) /M,3 glucan activation of crustacean hemocytes in vitroand in vivo. Biol. Bull. 164: 299–314.

    CAS  Google Scholar 

  • Söderhäll, K. (1982) Prophenoloxidase activating system and melanization-a recognition mechanism of arthropods?. Dev. Comp. Immunol. 6: 601–611.

    PubMed  Google Scholar 

  • Söderhäll, K. and Cerenius, L. (1992) Crustacean immunity. Ann. Rev. Fish Dis. 59: 2–23.

    Google Scholar 

  • Söderhäll, K., and Smith, VJ. (1986a) Prophenoloxidase-activating cascade as a recognition and defense system in arthropods. In: A. P. Gupta (ed.): Immunity in Invertebrates, John Wiley and Sons, New York, pp 208–223.

    Google Scholar 

  • Söderhäll, K. and Smith, VI (1986b) The prophenoloxidase activating system: The biochemistry of its activation and role in arthropod cellular immunity, with special reference to crustaceans. In: M. Brehelin (ed.): Immunity in Invertebrates, Springer-Verlag, Berlin, pp 208–223.

    Google Scholar 

  • Söderhäll, K. Wingren, A., Johansson, M. W. and Bertheussen, K. (1985) The cytotoxic reaction from the freshwater crayfish, Astacus astacus. Cell. Immunol. 94: 326–332.

    PubMed  Google Scholar 

  • Söderhäll, K., Cerenius, L. and Johansson, M. W. (1994a) The prophenoloxidase activating system and its role in invertebrate defense, In: G. Beck, E. L. Cooper, G. S. Habicht and J. J. Marchalonis (eds): Primordial Immunity: Foundation for the Vertebrate Immune System, Academic Press, New York, pp 155–161.

    Google Scholar 

  • Söderhäll, K. Johansson, M. W. and Cerenius, L. (1994b) Pattern recognition in invertebrates: the /2-1,3-glucan binding proteins. In: J. A. Hoffmann, C. A. Janeway and S. Natori (eds): Hemolytical and Humoral Immunity in Arthropods, R. G. Landes, Austin, pp 97–104.

    Google Scholar 

  • Sottrup-Jensen, L., Stepanik, T. M., Kristensen, T., Lonblad, P. B., Jones, CM., Wierzbik, D. M., Magnusson, S., Domdey, H., Wetsel, R. A., Lundwall, A., Tack, B. F. and Frey, G. H. (1985) Common evolutionary origin of a2-macroglobulin and complement components C3 and C4. Proc. Natl.Acad. Sei. U. S. A. 82: 9–13.

    CAS  Google Scholar 

  • Spycher, S. E., Arya, S., Iseman, D. E. and Painter, R. H. (1987) A functional, thioester-containing a2-macroglobulin homologue isolated from the hemolymph of the American lobster(Homarus americanus). J. Biol Chem. 262: 14606–146

    PubMed  CAS  Google Scholar 

  • Stewart, J. E. and Zwicker, B. M. (1974) Induction of various vaccines for inducing resistance in the lobster Homarus americanus. Contemp. Top. Immunobiol. 4: 233–239.

    Google Scholar 

  • Takle, G. B. and Lackie, A. M. (1986) Chemokinetic behavior of insect haemocytes in vitro. J.Cell Sci. 85: 85–94.

    PubMed  CAS  Google Scholar 

  • Thornqvist, P. O., Johansson, M. W. and Söderhäll, K. (1994) Opsonic activity of cell adhesion proteins and β-1,3-glucan binding proteins from two crustaceans. Dev. Comp. Immunol. 18: 3–12.

    PubMed  CAS  Google Scholar 

  • Tyson, C. J. and Jenkins, C. R. (1973) The importance of opsonic factors in the removal of bacteria from the circulation of the crayfish (Parachaeraps bicarinatus). Austr. J. Exp. Biol. Med.Sci. 51: 609–6

    CAS  Google Scholar 

  • Tyson, C. J. and Jenkins, C. R. (1974) The cytotoxic effect of haemocytes from the crayfish Parachaeraps bicarinatu) on tumour cells of vertebrates, Austr. J. Exp. Biol. Med. Sei. 52: 915–923.

    Google Scholar 

  • Vargas-Albores, F., Guzman-Murillo, A. and Ochoa, J. L. (1993a) An anticoagulant solution for haemolymph collection and prophenoloxidase studies of Panaeid shrimp (Panaeus californiensis). Comp. Biochem. Physiol [A] 106: 299–303.

    Google Scholar 

  • Vargas-Albores, F., Guzman-Murillo, A. and Ochoa, J. L. A. (1993b) Lipopolysaccharide-binding agglutinin isolated from brown shrimp (Penaeus californiensis Holmes) haemolymph. Comp. Biochem. Physiol. [A] 104: 407–413.

    Google Scholar 

  • Vargas-Albores, F., Jimenez-Vega, F. and Soderhäll, K. (1996) A plasma protein isolated from brown shrimp (Penaeus californiensis) which enhances the activation of prophenoloxidase system by β-1,3-glucan. Dev. Comp. Immunol. 20: 299–306.

    PubMed  CAS  Google Scholar 

  • Vasta, G. R. and Cohen, E. (1982) The specificity of Centrunoides sculpuratus ewing (Arizona lethal scorpion) hemolymph agglutinins. Dev. Comp. Immunol. 6: 219–230.

    PubMed  CAS  Google Scholar 

  • Vasta, G. R. and Marchalonis, JJ. (1984) Immunobiological significance of invertebrate lectins. Prog. Clin. Biol. Res. 157: 177–191.

    PubMed  CAS  Google Scholar 

  • Yeaton, R.W. (1981) Invertebrate lectins: Diversity of specificity, biological synthesis and function in recognition. Dev. Comp. Immunol. 5: 535–545.

    PubMed  CAS  Google Scholar 

  • Akai, H. and Sato, S. (1971) An ultrastructural study of the haemopoietic organs of the silkworm, Bombyx mori. J. Insect. Physiol. 17: 1665–1676.

    Google Scholar 

  • Anderson, R.S., Holmes, B. and Good, R.A. (1973) Comparative biochemistry of phagocy-tosing insect hemocytes. Comp. Biochem. Physiol. [B] 46: 59

    CAS  Google Scholar 

  • Ando, K., Okada, M. and Natori, S. (1987) Purification of sarcotoxin II from Sarcophaga peregrina. Biochemistry 26: 226–230.

    PubMed  CAS  Google Scholar 

  • Asling, B., Dushay, M.S. and Hultmark, D. (1995) Identification of early genes in the Droso-phila immune response by PCR-based differential display: the AttacinA gene and the evolution of attacin-like proteins. Insect Biochem. Molec. Biol. 25: 511–518.

    CAS  Google Scholar 

  • Beck, G., Cardinale, S., Wang, L., Reiner, M. and Sugumaran, M. (1996) Characterization of a defense complex consisting of interleukin 1 and phenol oxidase from the hemolymph of the tobacco hornworm, Manduca sexta. J. Biol Chem. 271: 11035–11038.

    PubMed  CAS  Google Scholar 

  • Boman, H.G., Faye, I., Gudmundsson, G.H., Lee, J.Y. and Lidholm, D.A. (1991) Cell-free immunity in Cecropia. A model system for antibacterial proteins. Eur. J. Biochem. 201: 23–31.

    PubMed  CAS  Google Scholar 

  • Boucias, D. and Pendland, J.C. (1993) The galactose binding lectin from the beet armyworm, Spedoptera exigua: distribution and site of synthesis. Insect Biochem. Molec. Biol. 23: 233–242.

    CAS  Google Scholar 

  • Brey, P.T., Lee, W.J., Yamakawa, M., Koyzumi, Y., Perrot, S., Francois, M. and Ashida, M. (1993) Role of the integument in insect immunity: epicuticular abrasion and induction of cecropin synthesis in cuticular epithelial cells. Proc. Natl. Acad. Sei. U.S.A. 90: 6275–6279.

    CAS  Google Scholar 

  • Brivio, M.F., Mazzei, C. and Scari, G. (1996) proPO system of Allogamus auricollis (Insecta): effects of various compounds on phenoloxidase activity. Comp. Biochem. Physiol. [B] 113: 281–287.

    Google Scholar 

  • Bulet, P., Cociancich, S., Dimarcq, J.L., Lambert, J., Reichhart, J.M., Hoffmann, D., Hetru, C. and Hoffmann, J.A. (1991) Isolation from a coleopteran insect of a novel inducible antibacterial peptide and of new member of the insect defensin family. J. Biol. Chem. 266: 24520–24525.

    PubMed  CAS  Google Scholar 

  • Bulet, P., Hegy, G., Lambert, J., Van Dorsselaer, A., Hoffmann, J.A. and Hetru, C. (1995) Insect immunity. The inducible antibacterial peptide diptericin carries two o-glycans necessary for biological activity. Biochemistry 34: 7394–7400.

    PubMed  CAS  Google Scholar 

  • Casteels, P., Ampe, C., Jacobs, F. and Tempst, P. (1993) Functional and chemical characterization of Hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera). J. Biol. Chem. 268: 7044–7054.

    PubMed  CAS  Google Scholar 

  • Casteels-Josson, K., Capaci, T., Casteels, P. and Tempst, P. (1993) Apidaecin multipeptide precursor structure: a putative mechanism for amplification of the insect antibacterial response. EMBOJ. 12: 1569–1578.

    CAS  Google Scholar 

  • Chalk, R., Albuquerque, C.M.R., Ham, P.J. and Townson, H. (1995) Full sequence and characterization of two insect defensins: immune peptides from the mosquito Aedes aegypti. Proc. R. Soc. London, 161: 217–221.

    Google Scholar 

  • Charalambidis, N.D., Bournazos, S.N., Lambropoulou, M. and Marmaras, VJ. (1994) Defense and melanization depend on the eumalin pathway, occur independently and are controlled differentially in developing Ceratitis capitata. Insect Biochem. Molec. Biol. 24: 655–662.

    CAS  Google Scholar 

  • Charalambidis, N.D., Zervas, C.G., Lambropoulou, M., Katsoris, P.G. and Marmaras, VJ. (1995) Lipopolysaccharide-stimulated exocytosis of nonself recognition protein from insect hemocytes depend on protein tyrosine phosphorylation. Eur. J. Cell Biol. 67: 32–41.

    PubMed  CAS  Google Scholar 

  • Charalambidis, N.D., Foukas, L.C. and Marmaras, VJ. (1996) Covalent association of lipopo-lysaccharide at the hemocyte surfaces of insects is an initial step for its internalization. Pro-tein-tyrosine phosphorylation requirement. Eur. J. Biochem. 236: 200–206.

    PubMed  CAS  Google Scholar 

  • Chernysh, S., Cociancich, S., Briand, I., Hetru, C. and Bulet, P. (1996) The inducible antibacterial peptides of the hemipteran insect Palomena prasina: Indentification of a unique family of proline-rich peptides and of a novel insect defensin. J. Insect Physiol. 42: 81–89.

    CAS  Google Scholar 

  • Cho, W.L., Fu, Y.C., Chen, C.C. and Ho, CM. (1996) Cloning and characterization of cDNAs encoding the antibacterial peptide, defensin A, from the mosquito, Aedes aegypti. Insect Biochem. Molec. Biol 26: 395–402.

    CAS  Google Scholar 

  • Chowdhury, S., Taniai, K., Hara, S., Kadono-Okuda, K., Kato, Y., Yamamoto, M., Xu, J., Choi, S.K., Debnath, N.C., Choi, H.K., Miyanoshita, A., Sugiyama, M., Asaoka, A. and Yamakawa, M. (1995) cDNA cloning and gene expression of lebocin, a novel member of antibacterial peptides from the silkworm, Bombyx mori. Biochem. Biophys. Res. Commun. 214: 271–278.

    CAS  Google Scholar 

  • Cociancich, S., Bulet, P., Hetru, C. and Hoffmann, J.A. (1994a) The inducible antibacterial peptides of insects. Parasitology Today 10: 132–139.

    PubMed  CAS  Google Scholar 

  • Cociancich, S., Dupont, A., Hegy, G., Lanot, R., Holder, R, Hetru, C., Hoffmann, J.A. and Bulet, P. (1994b) Novel inducible antibacterial peptides from a hemipteran insect, the sap-sucking bug Pyrrhocori apterus. Biochem. J. 300: 567–575.

    PubMed  CAS  Google Scholar 

  • Cox-Foster, D. and Stehr, J.E. (1994) Induction and localization of FAD-glucose dehydrogen-ase (GLD) during encapsulation of abiotic implants in Manduca sexta larva. J. Insect. Phy-siol 40: 235–249.

    CAS  Google Scholar 

  • Drif, L. and Brehelin, M. (1994) Purification and characterization of an agglutinin from the hemolymph of Locusta migratoria (Orthoptera). Insect Biochem. Molec. Biol. 24: 283–289.

    CAS  Google Scholar 

  • Gardiner, M.S. (1972) The Biology of Invertebrates. McGraw-Hill Book Company, New York.

    Google Scholar 

  • George, J.F., Howcroft, T.K. and Karp, R.D. (1987) Primary integumentary allograft reactivity in the American cockroach, Periplaneta americana. Transplantation 43: 514–519.

    CAS  Google Scholar 

  • Gupta, P. (1991) Insect immunocytes and other hemocytes: roles in cellular and humoral immunity, In: A.P. Gupta (ed.): Immunology of Insects and Other Arthropods, CRC Press, Boca Raton, pp 19–119.

    Google Scholar 

  • Hapner, K.D. and Jermyn, M.A. (1981) Haemagglutinin activity in the haemolymph of Teleo-gryllus commodus (Walker). Insect Biochem. 11: 287–295.

    CAS  Google Scholar 

  • Hayakawa, Y. (1994) Cellular immunosuppressive protein in the plasma of parasitized insect larvae. J. Biol Chem. 269: 14536–14540.

    PubMed  CAS  Google Scholar 

  • Hirayama, E., Ishikawa, N. and Kim, J. (1994) Further characterization of a novel lectin derived from silkworm faeces; specific binding to immunoglobulins, and activation of immunocytes. Cell Biol. Int. 18: 257–269.

    Google Scholar 

  • Hoffmann, J.A. (1995) Innate immunity of insects. Curr. Opin. Immunol. 7: 4–10.

    PubMed  CAS  Google Scholar 

  • Hultmark, D. (1993) Immune reaction in Drosophila and other insects: a model for innate immunity. Trends Genet. 9: 178–183.

    PubMed  CAS  Google Scholar 

  • Hultmark, D., Steiner, H., Rasmuson, T. and Boman, H.G. (1980) Insect immunity. Purification and properties of three inducible proteins from hemolymph of immunized pupae of Hya-lophora cecropia. Eur. J. Biochem. 106: 7–16.

    PubMed  CAS  Google Scholar 

  • Ingram, G.A., East, J. and Molyneux, D.H. (1984) Naturally occurring agglutinins against trypanosomatid flagellates in the hemolymph of insects. Parasitology 89: 435–451.

    PubMed  Google Scholar 

  • Ingram, G.A. and Molyneux, D.H. (1993) Comparative study of haemagglutination activity in the haemolymph of three tsetse fly Glossina species. Comp. Biochem. Physiol [B] 106: 563–573.

    Google Scholar 

  • Jones, J.C. (1977) The Circulatory System of Insects. C.C. Thomas, Springfield.

    Google Scholar 

  • Karp, R.D. (1990) Transplantation immunity in insects: Does allograft responsiveness exist?. Res. Immunol 11: 713–725.

    Google Scholar 

  • Karp, R.D. and Meade, C.C. (1993) Transplantation immunity in the american cockroach, Periplaneta americana: the rejection of integumentary grafts from Blatta orientalis. Dev. Comp. Immunol 17: 301–307.

    CAS  Google Scholar 

  • Kawauchi, H., Hosono, M., Takayanagi, Y. and Nitta, K. (1993) Agglutinins from aquatic insects-tumor cell agglutination activity. Experientia 49: 358–361.

    PubMed  CAS  Google Scholar 

  • Kotani, E., Yamakawa, M., Iwamoto, S., Tashiro, M., Mori, H., Sumida, M., Matsubara, F., Taniai, K., Kadono-Okuda, K. and Kato, Y. (1995) Cloning and expression of the gene of hemocytin, an insect humoral lectin which is homologous with the mammalian von Wille-brand factor. Biochem. Biophys. Acta 1260: 245–258.

    PubMed  Google Scholar 

  • Lackie, A.M. (1979) Cellular recognition of foreigness in two insect species, the American cockroach and the desert locust. Immunology 36: 909–914.

    PubMed  CAS  Google Scholar 

  • Lanz-Mendoza, H., Bettencourt, R., Fabbri, M. and Faye, I. (1996) Regulation of the insect immune response: The effect of hemolin on cellular immune mechanisms. Cell. Immunol. 169: 47–54.

    PubMed  CAS  Google Scholar 

  • Maget-Dana, R., Bonmatin, J.M., Hetru, C., Ptak, M. and Maurizot, J.C. (1995) The secondary structure of the insect defensin A depends on its environment. A circular dichroism study. Biochimie 11-.240–244.

    Google Scholar 

  • Marmaras, V.J. and Charalambidis, N.D. (1992) Certain hemocyte proteins of the medfly Cera-titis capitata are responsible for nonself recognition and immunobilization of E. coli in vitro. Arch. Insect Biochem. Physiol. 21: 281–288.

    CAS  Google Scholar 

  • Marmaras, VJ., Charalambidis, N.D. and Lambropoulou, M. (1994) Cellular defense mechanisms in C. capitata: recognition and entrapment of E. coli by hemocytes. Arch. Insect Biochem. Physiol. 26: 1–14.

    PubMed  CAS  Google Scholar 

  • Marmaras, V.J., Charalambidis, N.D. and Zervas, C.G. (1996) Immune response in insects: The role of phenoloxidase in defense reaction in relation to melanization and sclerotization. Arch. Insect Biochem. Physiol. 31: 119–133.

    PubMed  CAS  Google Scholar 

  • McKenzie, A.N.J. and Preston, T.M. (1992) Purification and characterization of a galactose-specific agglutinin from the haemolymph of the larval stages of the insect Calliphora vomi-toria. Dev. Comp. Immunol. 16: 31–39.

    PubMed  CAS  Google Scholar 

  • Miller, J.S., Howard, R.W., Nguven, T., Nguven, A., Rosario, R.M.T. and Staneysamuelson, W. (1996) Eicosanoids mediate nodulation responses to bacterial infections in larvae of the tene-brionid beetle Zophobas atratus. J. Insect Physiol. 42: 3–12.

    CAS  Google Scholar 

  • Molyneux, D.H., Takle, G., Ibrahim, A.B. and Ingram, D. (1986) Insect immunity to Trypano-somatidae. Symp. Zool. Soc. London 56: 117–144.

    Google Scholar 

  • Nappi, A.J. (1974) Insect hemocytes and the problems of host recognition of foreigness, In: E.L. Cooper (ed.): Contemporary Topics in Immunobiology. 4. Invertebrate Immunology, Plenum Press, New York, pp 207–224.

    Google Scholar 

  • Nappi, A.J., Vass, E., Caron, Y. and Frey, F. (1992) Identification of 3,4-dihydroxy-phenylalanine, 5,6-dihydroxyindole, and N-acetylarterenone during eumalin formation in immune reactive larvae of Drosophila melanogaster. Arch. Insect Biochem. Physiol. 20: 181–191.

    PubMed  CAS  Google Scholar 

  • Nappi, A.J., Vass, E., Frey, F. and Caron, Y. (1995) Superoxide anion generation in Drosophila during melanotic encapsulation of parasites. Eur. J. Cell Biol. 68: 450–456.

    PubMed  CAS  Google Scholar 

  • Nayar, J.K., Mikarts, L.L., Knight, J.W. and Bradley, TJ. (1992) Characterization of the intra-cellular melanization response in Anopheles quadrimaculatus against subperiodic Brugia malayi larvae. J. Parasitol. 78: 876–880.

    PubMed  CAS  Google Scholar 

  • Pendland, J.C. and Boucias, D. (1986) Characteristics of a galactose-binding hemagglutinin (lectin) from hemolymph of Soidiotera exigua larvae. Dev. Comp. Immunol. 10: 477–487.

    PubMed  CAS  Google Scholar 

  • Poll, M. (1934) Recherches histophysiologiques sur les tubes de malphigi du Tenebrio molitor L. Rec. Inst. Zool. Torley Rousseau 5: 73–126.

    Google Scholar 

  • Price, CD. and Ratcliffe, N.A. (1974) A reappraisal of insect haemocyte classification by the examination of blood from fifteen insect orders. Z Zellforsch. Mikroskop. Anat. 147: 537–549.

    CAS  Google Scholar 

  • Pye, A.E. (1978) Activation of prophenoloxidase and inhibition of melanization in the haemolymph of immune Galleria mellonella larvae. Insect Biochem. 8: 117–123.

    CAS  Google Scholar 

  • Ratcliffe, N.A. and Rowley, A.F. (1983) Recognition factors in insect hemolymph. Dev. Comp. Immunol 7: 653

    Google Scholar 

  • Ratcliffe, N.A., White, K.N., Rowley, A.F. and Walters, J.B. (1982) Cellular defense systems of the arhropoda, In: N. Cohen and M.M. Sigel (eds): The Reticuloendothelial System, Vol. 3, Plenum Press, New York, pp 167–255.

    Google Scholar 

  • Renwrantz, L. (1983) Involvement of agglutinins (lectins) in invertebrate defense reaction. Dev. Comp. Immunol. 7: 603–608.

    CAS  Google Scholar 

  • Rowley, A.F. and Ratcliffe, N.A. (1981) Insects, In: N.A. Ratcliffe and A.F. Rowley (eds): Invertebrate Blood Cells Vol. 2, Academic Press, London, pp 421–488.

    Google Scholar 

  • Sima, P. and Větvička, V (1990) Evolution of Immune Reactions. CRC Press, Boca Raton.

    Google Scholar 

  • Schmidt, O., Faye, I., Lindstromdinnetz, I. and Sun, S.C. (1993) Specific immune recognition of insect hemolin-review. Dev. Comp. Immunol. 17: 195–200.

    PubMed  CAS  Google Scholar 

  • Smith, A.R. and Ratcliffe, N.A. (1977) The encapsulation of foreign tissue implants in Galle-ria mellonella larvae. J. Invertebr. Pathol. 23: 175

    Google Scholar 

  • Stebbins, M.R. and Hapner, K.D. (1985) Preparation and properties of haemagglutinin from haemolymoh of Acrididae (grasshoppers). Insect Biochem. 15: 451–462.

    CAS  Google Scholar 

  • Sun, S.C. and Faye, I. (1995) Transcription of immune genes in the giant silkmoth, Hyalophora cecropia, is augumented by H2O2 and diminished by thiol reagents. Eur. J. Biochem. 231: 93–98.

    PubMed  CAS  Google Scholar 

  • Thomas, I.G. and Ratcliffe, N.A. (1982) Integumental grafting and immunorecognition in insects. Dev. Comp. Immunol. 9: 643–654.

    Google Scholar 

  • Umetsu, K., Yamashita, K., Suzuki, I, Yamashita, T. and Suzuki, T. (1993) Purification and characterization of an A-acetyllactosamine-specific lectin from larvae of a moth, Phalera flavescens. Arch. Biochem. Biophys. 301: 200–205.

    CAS  Google Scholar 

  • Vass, E., Nappi, A.J. and Carton, Y. (1993) Comparative study of immune competence and host susceptibility in Drosophila melanogaster parasitized by Leptopilina boulardi and Asobara tabida. J. Parasitol 79: 106–112.

    Google Scholar 

  • Wago, H. (1983) Cellular recognition of foreign materials by Bombyx mori phagocytes: II. Role of hemolymph and phagocyte filopodia in the cellular reactions. Dev. Comp. Immunol. 1: 199-208.

    Google Scholar 

  • Wheeler, M.B., Stuart, G.S. and Hapner, K.D. (1993) Agglutinin mediated opsonization of fungal blastospores in Melanoplus differentialis (Insecta). J. Insect Physiol. 39: 477–483.

    CAS  Google Scholar 

  • Yeaton, R.W. (1981) Invertebrate lectins: Diversity of specificity, biological synthesis and function in recognition. Dev. Comp. Immunol. 5: 535–545.

    PubMed  CAS  Google Scholar 

  • Zachary, D. and Hoffmann, J.A. (1973) The haemocytes of Calliphora erythrocephala (Meig) (Diptera). Z. Zellforsch. Mikroskop. Anat. 141: 55–73.

    CAS  Google Scholar 

  • Adema, CM., van Deutekom-Mulder, E.C., van der Knaap, W.RW. and Sminia, T. (1993) NADPH-oxidase activity: the probable source of reactive oxygen intermediate generation in hemocytes of the gastropod Lymnea stagnalis. J. Leukocyte Biol 54: 379–383.

    PubMed  CAS  Google Scholar 

  • Arimoto, R. and Tripp, M.R. (1977) Characterization of a bacterial agglutinin in the hemo-lymph of the hard clam, Mercenaria mercenaria. J. Invertebr. Pathol. 30: 406–413.

    CAS  Google Scholar 

  • Barnes, R.D. (1987) Invertebrate Zoology. Saunders College Publ., Philadelphia.

    Google Scholar 

  • Bayne, C.J. (1973a) Internal defense mechanisms of Octopus dolfeini. Malacol. Rev. 6: 13–17.

    Google Scholar 

  • Bayne, C.J. (1973b) Molluscan internal defense mechanism: the fate of C14-labelled bacteria in the land snail Helixpomatia (L.). J. Comp. Physiol. 86: 17–25.

    Google Scholar 

  • Bayne, C.J. (1983) Molluscan immunobiology. In: A.S.M. Saleuddin and K.M. Wibur (eds): The Mollusca 5, Physiology, Part 2, Academic Press, New York, pp 407–486.

    Google Scholar 

  • Bayne, C.J. and Fryer, S.E. (1994) Phagocytosis and invertebrate opsoninsJn relation to parasitism. In: G. Beck, EX. Cooper, G.S. Habicht and J.J. Marchalonis (eds): Primordial Immunity: Foundation for the Vertebrate Immune System, Ann. New York Acad. Science, New York,pp 162–177.

    Google Scholar 

  • Bayne, C.J., Buckley, P.M. and Dewan, P.C. (1980) Macrophage-like hemocytes of resistantBiomphalaria glabrata are cytotoxic for sporocysts of Schistosoma mansoni in vitro. J. Parasitol. 29: 131–142.

    Google Scholar 

  • Beckmann, N., Morse, M.P. and Moore, CM. (1992) Comparative study of phagocytosis in normal and diseased hemocytes of the bivalve mollusc Mya arenia. J. Invertebr. Pathol. 59: 124–132.

    Google Scholar 

  • Beckwith, M., Urba, W.J. and Longo, D.L. (1993) Growth inhibition of human lymphoma cell lines by marine products, dolastatins 10 and 15. J. Natl Cancer Inst. 85: 483–488.

    PubMed  CAS  Google Scholar 

  • Boer, H.H. and Sminia, T. (1976) Sieve structure of slit diaphragms of podocytes and pore cells of gastropod molluscs. Cell Tissue Res. 170: 221–229.

    PubMed  CAS  Google Scholar 

  • Brown, A.C. and Brown, R.J. (1965) The fate of thorium dioxide injected into the pedal sinus of Bullia (Gastropoda: Prosobranchia). J. Exp. Biol. 42: 509–519.

    Google Scholar 

  • Cheng, T.C. (1981) Bivalves, In: N.A. Ratcliffe and A.F. Rowley (eds): Invertebrate Blood Cells, Vol. 2, Academic Press, London, pp 233–300.

    Google Scholar 

  • Cheng, T.C. and Galloway, P.C. (1970) Transplantation immunity in molluscs: The histoincompatibility of Helisoma duryi normale with allografts and xenografts. J. Invertebr. Pathol. 15: 177–192.

    PubMed  CAS  Google Scholar 

  • Cheng, T.C., Rodrick, G.E., Foley, D.A. and Koehler, S.A. (1975) Release of lysozyme from hemolymph cells of Mercenaria mercenaria during phagocytosis. J. Invertebr. Pathol. 25: 261–265.

    PubMed  CAS  Google Scholar 

  • Conway Morris, S. (1993) The fossil record and the early evolution of the matazoa. Nature 361: 219–225.

    Google Scholar 

  • Coustau, C and Yoshino, T.P. (1994) Surface membrane polypeptides associated with hemocytes from Schistosoma raarcsora-susceptible and-resistant strains of Biomphalaria glabrata (Gastropoda). J. Invertebr. Pathol. 63: 82–89.

    PubMed  CAS  Google Scholar 

  • Cowden, R.R. and Curtis, S.K. (1981) Cephalopods, In: N.A. Ratcliffe and A.F. Rowley (eds): Invertebrate Blood Cells, Vol. 2, Academic Press, London, pp 301–323.

    Google Scholar 

  • Crichton, R. and Lafferty, K.J. (1975) The discriminatory capacity of phagocytic cells in the chiton Liolophura gaimardi), In: W.H. Hildemann and A.A. Benedict (eds): Immunologie Phylogeny, Plenum Press, New York, pp 89–98.

    Google Scholar 

  • Crichton, R., Killby, VA.A. and Lafferty, K.J. (1973) The distribution and morphology of phagocytic cells in the chiton Liolophura gaimardi. Austr. J. Exp. Biol. Med. Sei. 51: 357–372.

    CAS  Google Scholar 

  • Cuénot, L. (1897) Les globules sanquins et les organes lymphoides des invertébrés (Revue critique et nouvelles recherches). Arch. Anat. Microsc. Morphol. Exp. 1: 153–192.

    Google Scholar 

  • Cuénot, L. (1914) Les organes phagocyaires des mollusques. Arch. Zool. Exp. Gen. 54: 267–305.

    Google Scholar 

  • Dikkeboom, R., Bayne, C.J., van der Knaap, W.RW. and Tijnagel, J.M.G.H. (1988) Possible role of reactive forms of oxygen in in vitro killing of Schistosoma mansoni sporocysts by hemocytes of Lymnea stagnalis. Parasitol. Res. 75: 148–154.

    PubMed  CAS  Google Scholar 

  • Ey, PL. and Jenkin, C.R. (1982) Molecular basis of self/non-self discrimination in the invertebrata. In: N. Cohen and M.M. Sigel (eds): The Reticuloendothelial System, Vol. 3, Plenum Press, New York, pp 321–391.

    Google Scholar 

  • Fawcett, L.B. and Tripp, M.R. (1994) Chemotaxis of Mercenaria mercenaria hemocytes to bacteria in vitro. J. Invertebr. Pathol. 63: 275–284.

    PubMed  CAS  Google Scholar 

  • Fletcher, T.C and Cooper-Willis, C.A. (1982) Cellular defense systems of the mollusca, In: N. Cohen and M.M. Sigel (eds): The Reticuloendothelial System, Vol. 3, Plenum Press, New York,pp 141–166.

    Google Scholar 

  • Franceschi, C., Cossarizza, A., Monti, D. and Ottaviani, E. (1991a) Cytotoxicity and immunocyte markers in cells from the freshwater snail Planorbarius corneus (L.) (Gastropoda: Pulmonata): implications for the evolution of natural killer cells. Eur. J. Immunol. 21: 489–493.

    PubMed  CAS  Google Scholar 

  • Franceschi, C., Cossarizza, A., Ortolani, C., Monti, D. and Ottaviani, E. (1991b) Natural cyto-toxicity in a freshwater pulmonate mollusc: an unorthodox comparative approach. Adv. Neuroimmunol. 1: 99–113.

    Google Scholar 

  • Franchini, A., Conte, A. and Ottaviani, E. (1995) Nitric oxide: an ancestral immunocyte effector molecule. Adv. Neuroimmunol. 5: 463–478.

    PubMed  CAS  Google Scholar 

  • Fryer, S.E. and Bayne, C.J. (1966) Phagocytosis of latex beads by Biomphalaria glabrata hemocytes is modulated in a strain-specific manner by adsorbed plasma components. Dev. Comp. Immunol 20: 23–37.

    Google Scholar 

  • Genedani, S., Bernardi, M., Ottaviani, E., Franceschi, C., Leung, M.K. and Stefano, G.B. (1994) Differential modulation of invertebrate hemocyte motility by CRF, ACTH, and its fragments. Peptides 15: 203–206.

    PubMed  CAS  Google Scholar 

  • Gold, E.R. and Balding, P. (1975) Receptor-Specific Proteins: Plant and Animal Lectins. Excerpta Medica, Amsterdam.

    Google Scholar 

  • Granath, W.O., Connors, V.A. and Tarleton, R.L. (1994) Interleukin 1 activity in haemolymph from strains of the snail Biomphalaria glabrata varying in susceptibility to the human blood fluke, Schistosoma mansoni: presence, differential expression, and biological function. Cyto-kine 6: 21–27.

    CAS  Google Scholar 

  • Hahn, U.K., Fryer, S.E. and Bayne, C.J. (1996) An invertebrate (molluscan) plasma protein that binds to vertebrate immunoglobulins and its potential for yielding false-positives in antibody-based detection systems. Dev. Comp. Immunol. 20: 39–50.

    PubMed  CAS  Google Scholar 

  • Harris, K.R. (1975) The fine* structure of encapsulation in Biomphalaria glabrata. Ann. N.Y. Acad. Sei. 266: 446–4

    CAS  Google Scholar 

  • Hertel, L.A., Strieker, S.A., Monroy, ER, Wilson, W.D. and Loker, E.S. (1994) Biomphalaria glabrata hemolymph lectins: binding to bacteria, mammalian erythrocytes, and to sporocysts and rediae of Echinostoma paraensei. J. Invertebr. Pathol. 64: 52–61.

    PubMed  CAS  Google Scholar 

  • Hughes, T.K., Smith, E.M., Chin, R., Cadet, P., Sinisterra, X, Leung, M.K., Shipp, M.A., Scharrer, B. and Stefano, G.B. (1990) Interaction of immunoactive monokines (interleukin 1 and tumor necrosis factor) in the bivalve mollusc Mytilus edulis. Proc. Natl Acad. Sei. U.S.A. 87: 4426–4429.

    CAS  Google Scholar 

  • Hughes, T.K., Smith, E.M., Leung, M.K. and Stefano, G.B. (1992) Immunoactive cytokines in Mytilus edulis nervous and immune interactions. Acta Biol. Hung. 43: 269–273.

    PubMed  CAS  Google Scholar 

  • Iijima, R., Kisugi, J. and Yamayaki, M. (1994) Biopolymers from marine invertebrates. XIY Antifungal property of dolabellanin A, a putative seld-defense molecule of the sea hare, Dolabella auricularia. Biol. Pharm. Bull. 17: 1144–1146.

    PubMed  CAS  Google Scholar 

  • Jeong, K. H., Lie, K.J. and Heyneman, D. (1983) The ultrastructure of the amebocyte-producing organ in Biomphalaria glabrata. Dev. Comp. Immunol. 7: 217–228.

    PubMed  CAS  Google Scholar 

  • Kamiya, H., Muramoto, K. and Ogata, K. (1984) Antibacterial activity in the egg mass of a sea hare. Experientia 40: 947–949.

    CAS  Google Scholar 

  • Kawaguti, S. (1970) Electron microscopy of muscle fibres in blood vessels and capillaries of cephalopods. Biol. J. Okayama Univ. 16: 19–28.

    Google Scholar 

  • Keber, G.A.F. (1851) Beiträge für Anatomie und Physiologie der Weichtiere. Gebr. Bornträger, Königsberg.

    Google Scholar 

  • Killby, V.A.A., Crichton, R. and Lafferty, K.J. (1973) Fine structure of the phagocytic cells in the chiton, Liolophura gaimardi. Austr. J. Exp. Biol. Med. Sei. 51: 373–391.

    CAS  Google Scholar 

  • Kim, C.B., Moon, S.Y., Gelder, S.R. and Kim, W. (1996) Phylogenetic relationships of annelids, molluscs, and arthropods evidences from molecules and morphology. J. Morph. Evol. 43: 207–215.

    CAS  Google Scholar 

  • Kinoti, G.K. (1971) Observations on the infection of bulinid snails with Schistosoma mattheei. Parasitology 62: 161–170.

    PubMed  CAS  Google Scholar 

  • Krupa, P.L., Lewis, L.M. and Del Vecchio, P. (1977) Schistosoma haematobium in Bulinus guer-nei: electron misroscopy of hemocyte-sporocyst interactions. J. Invertebrate Pathol. 30: 35–45.

    CAS  Google Scholar 

  • Lebel, J.M., Giard, W, Favrel, P. and Boucaud-Camou, E. (1996) Effects of different vertebrate growth factors on primary cultures of hemocytes from the gastropod molluscs, Haliotis tuberculata. Biol Cell 86: 67–72.

    CAS  Google Scholar 

  • Lie, K.J., Heyneman, D. and You, P. (1975) The origin of amoebocytes in Biomphalaria glabrata. J. Parasitol 61: 574–576.

    Google Scholar 

  • Lie, K.J. and Heyneman, D. (1976) Studies of resistance in snails. 6. Escape ofEchinostome lin-doense sporocysts from encapsulation in the snail heart and subsequent loss of the host’s ability to resist infection by the same parasite. J. Parasitol. 62: 298–302.

    PubMed  CAS  Google Scholar 

  • Loker, E.S., Couch, L. and Herten, L.A. (1994) Elevated agglutination titres in plasma of Biom-phalaria glabrata exposed to Echinostoma paraensei- characterization and functional relevance of a trematode-induced response. Parasitology 108: 17–26.

    PubMed  CAS  Google Scholar 

  • Lopez-Gomez, C., Villalba, A. and Bachere, E. (1994) Absence of generation of active oxygen radicals by the hemocytes of the clam, Ruditapes decussatus (Mollusca: Bivalvia) coupled with phagocytosis. J. Invertehr. Pathol 64: 188–192.

    Google Scholar 

  • May, R.T. (1990) How many species?. Phil Trans. R. Soc. London B 330: 293–304.

    Google Scholar 

  • Meglitsch, P.A. (1967) Invertebrate Zoology. Oxford Univ. Press, London.

    Google Scholar 

  • Moore, M.N. and Lowe, D.M. (1977) The cytology and cytochemistry of the hemocytes of Mytilus edulis and their responses to experimentally injected carbon particles. J. Invert. Pathol 29: 18–30.

    CAS  Google Scholar 

  • Mori, K., Tone, Y., Suzuki, T., Kasahara, K. and Nomura, T. (1980) Defense mechanisms of molluscs, I. Bactericidal and agglutinin activities in the scallop tissues. Bull. Jap. Soc. Fish 46: 717–723.

    Google Scholar 

  • Nakamura, N., Mori, K., Inooka, S. and Nomura, T. (1985) In vitro production of hydrogen peroxide by the amoebocytes of the scallop, Patinopecten yessoensis (Jay). Dev. Comp. Immunol 9: 407–417.

    PubMed  CAS  Google Scholar 

  • Noel, D., Bachere, E. and Mialhe, E. (1993) Phagocytosis associated chemiluminescence of hemocytes in Mytilus edulis (Bivalvia). Dev. Comp. Immunol 17: 483–4

    PubMed  CAS  Google Scholar 

  • Nunez, P.E., Adema, CM. and Dejongbrink, M. (1994) Modulation of the bacterial clearance activity of haemocytes from the freshwater mollusc, Lymnaea stagnalis, by the avian schi-stosome, Trichobilharzia ocellata. Parasitology 109: 299–310.

    PubMed  Google Scholar 

  • Olafsen, J.A. (1995) Role of lectins (C-reactive protein) in defense of marine bivalves against bacteria. Adv. Exp. Med. Biol 371: 343–348.

    Google Scholar 

  • Otsuka-Fuchino, H., Watanabe, Y., Hirakawa, C., Tamiya, T., Matsumoto, J.J. and Tsuchiya, T. (1992) Bactericidal action of a glycoprotein from the body surface mucus of gian african snail. Comp. Biochem. Physiol [C] 101: 607–613.

    CAS  Google Scholar 

  • Ottaviani, E., Franchini, A. and Fontanili, P. (1992) The presence of immunoreactive vertebrate bioactive peptide substances in hemocytes of the freshwater snail Viviparus ater (Gastropoda, Prosobranchia). Cell Mol Neurobiol 12: 455–462.

    PubMed  CAS  Google Scholar 

  • Ottaviani, E., Paemen, L., Cadet, P. and Stefano, G.B. (1993) Evidence for nitric oxide production and utilization as a bacteriocidal agent by invertebrate immunocytes. Eur. J. Pharmacol 248: 319–324.

    PubMed  Google Scholar 

  • Ottaviani, E., Franchini, A., Caselgrandi, E., Cossarizza, A. and Franceschi, C. (1994) Relationship between corticotropin-releasing factor and interleukin-2: evolutionary evidence. FEBSLett. 351: 19–21.

    CAS  Google Scholar 

  • Ottaviani, E., Caselgrandi, E. and Franceschi, C. (1995a) Cytokines and evolution: in vitro effects of IL-1 α, IL-1β, TNF-α and TNF-β on an ancestral type of stress response. Biochem. Biophys. Res. Comm. 207: 288–292.

    PubMed  CAS  Google Scholar 

  • Ottaviani, E., Franchini, A., Cassanelli, S. and Genedani, S. (1995b) Cytokines and invertebrate immune responses. Biol Cell 85: 87–91.

    PubMed  CAS  Google Scholar 

  • Ouwe-Missi-Oukem-Boyer, O., Porchet, M., Capron, A. and Dissous, C. (1994) Characterization of immunoreactive TNF alpha molecules in the gastropod Biomphalaria glabrata. Dev. Comp. Immunol 18: 211–218.

    PubMed  CAS  Google Scholar 

  • Pemberton, R.T., (1974) Anti-A and anti-B of gastropod origin. Ann. N.Y. Acad. Sei. 234: 95–107.

    CAS  Google Scholar 

  • Prowse, R.H. and Tait, N.N. (1969) In vitro phagocytosis by amoebocytes from the hemolymph of Helix aspersa (Müller). I. Evidence for opsonic factor(s) in serum. Immunology 17: 437–443.

    PubMed  CAS  Google Scholar 

  • Reade, P.C. (1968) Phagocytosis in invertebrates. Austr. J. Exp. Biol. Med. Sei. 46: 219–229.

    CAS  Google Scholar 

  • Runnegar, B. and Pojeta, J. (1985) Origin and diversification of the Mollusca, In: E.R. Trueman and M.R. Clarke (eds): The Mollusca, Vol. 10, Evolution, Academic Press, Orlando, pp 1–57.

    Google Scholar 

  • Scheltema, A.H. (1993) Aplacophora as progenetic aculiferans and the coelomate origin of molluscs as the sister taxon of sipuncula. Biol Bull 184: 57–78.

    Google Scholar 

  • Schipp, R. (1987) The blood vessels of cephalopods. A comparative and functional survey. Experientia 43: 52–537.

    Google Scholar 

  • Sima, P. and Větvička, V. (1990) Evolution of immune reactions. CRC Press, Boca Raton.

    Google Scholar 

  • Sminia, T. (1972) Structure and function of blood and connective tissue cells of the fresh water pulmonate Lymnea stagnalis studied by electron microscopy and enzyme histochemistry. Z. Zeilforsch. Mikrosk. Anat. 130: 497–526.

    CAS  Google Scholar 

  • Sminia, T. (1974) Haematopoiesis in the freshwater snail Lymnea stagnalis studies by electron microscopy and autoradiography. Cell Tiss. Res. 150: 443–454.

    CAS  Google Scholar 

  • Sminia, T. (1981) Gastropods, In: N.A. Ratcliffe and A.F. Rowley (eds): Invertebrate Blood Cells, Vol. 1, Academic Press, London, pp 191-232.

    Google Scholar 

  • Sminia, T., van der Knaap, W.P.W. and Edelenbosch, P. (1979a) The role of serum factors in phagocytosis of foreign particles by blood cells of the fresh water snail Lymnea stagnalis. Dev. Comp. Immunol. 3: 37–44.

    PubMed  CAS  Google Scholar 

  • Sminia, T., van der Knaap, W.P.W. and Kroese, F.G.M. (1979b) Fixed phagocytes in the freshwater snail Lymnea stagnalis. Cell. Tissue Res. 196: 545–548.

    PubMed  CAS  Google Scholar 

  • Sullivan, XT. (1990) Long-term survival of heterotopic allografts of the amoebocyte-producing organ in Biomphalaria glahrata (Mollusca: Pulmonata). Trans. Am. Microsc. Soc. 109: 52–60.

    Google Scholar 

  • Sullivan, XT, Andrews, J.A. and Currie, R.T. (1992) Heterotopic heart transplant in Biophala-ria glabrata (Mollusca: Pulmonata): fate of allografts. Trans. Am. Microsc. Soc. 111: 1–15.

    Google Scholar 

  • Sullivan, J.T., Weir, G.O. and Brammer, S.R. (1993) Heterotopic heart transplants in Biomphalaria glabrata (Mollusca: Pulmonata). Fate of congeneric xenografts. Dev. Comp. Immunol.

    Google Scholar 

  • Sullivan, I.T, Brammer, S.R., Hargraves, CD. and Owens, B.S. (1995) Heterotopic heart transplants in Biomphalaria glabrata (Mollusca: Pulmonata): Fate of xenografts from seven pul-monate genera. Invertebrate Biol. 114: 151–160.

    Google Scholar 

  • Stuart, A.E. (1968) The reticülo-endothelial apparatus of the lesser octopus Eledone cirrosa. J. Pathol. Bacteriol 96: 401–412.

    PubMed  CAS  Google Scholar 

  • Stumpf, XL. and Gilbertson, D.E. (1980) Differential leucocytic responses of Biomphalaria glabrata to infection with Schistosoma mansoni, J. Invertebrate Pathol. 36: 217–218.

    Google Scholar 

  • Takamatsu, N., Skiba, T, Muramoto, K. and Kamiva, H. (1995) Molecular cloning of the defense factor in the albumen gland of the sea hare Aplysia kurodai. FEBS Lett. 311: 373–376.

    Google Scholar 

  • Takatsuki, S.I. (1934) On the nature and functions of the amoebocyte of Otrea edulis. Quart. J. Microsc. Sei. 76: 379–431.

    Google Scholar 

  • Torreilles, X, Guerin, M.C. and Roch, P. (1996) Reactive oxygen species and defense mechanisms in marine bivalves. Compt. Rendus Acad. Sei. 319: 209–218.

    CAS  Google Scholar 

  • Tripp, M.R. (1966) Hemagglutinin in the blood of the oyster hemolymph. J. Invertebr. Pathol. 8: 478–484.

    PubMed  CAS  Google Scholar 

  • Tripp, M.R. (1974a) Molluscan immunity. Ann. N.Y.Acad. Sei. 234: 23–27.

    CAS  Google Scholar 

  • Tripp, M.R. (1974b) Oyster hemolymph proteins. Ann. N.Y.Acad. Sei. 234: 18–20.

    CAS  Google Scholar 

  • Tripp, M.R. (1992a) Phagocytosis by hemocytes of the hard clam, Mercenaria mercenaria. J. Invertebr. Pathol. 59: 478–484.

    Google Scholar 

  • Tripp, M.R. (1992b) Agglutinins in the hemolymph of the hard clam, Mercenaria mercenaria. J. Invertebr. Pathol 59: 228–234.

    PubMed  CAS  Google Scholar 

  • Tyler, A. (1946) Natural heteroagglutinins in the body fluids and seminal fluids of various invertebrates. Biol Bull. 90: 213–219.

    PubMed  CAS  Google Scholar 

  • van der Knaap, W.P.W. and Loker, E.S. (1990) Immune mechanisms in trematode-snail interactions. Parasitol Today 6: 175–182.

    PubMed  Google Scholar 

  • Vasta, G.R. and Marchalonis, XX (1987) Invertebrate agglutinins and the evolution of humoral and cellular recognition factors. In: A.H. Greenberg (ed.): Invertebrate Models. Cell Receptors and Cell Communication, Karger, Basel, pp 134–150.

    Google Scholar 

  • Vasta, G.R., Ahmed, H., Fink, N.E., Elola, M.T., Marsh, A.G., Snowden, A. and Odom, E.W (1994) Animal Lectins as self/non-self recognition molecules Biochemical and genetic approaches to understanding their biological roles and evolution. In: G. Beck, E.L. Cooper, G.S. Habicht and XX Marchalonis (eds): Primordial Immunity: Foundation for the Vertebrate Immune System Ann. New York Acad. Science, New York, pp 55–73.

    Google Scholar 

  • von Salvini-Plaven, L. (1988) Annelida and mollusca-a prospectus, In: W. Westheide and CO. Hermans (eds): The Ultrastructure of Polychaeta, Gustav Fischer Verlag, Stuttgart, pp 383–396.

    Google Scholar 

  • Yoshino, T.P. (1976) Encapsulation response of the marine prosobranch Cerithidea californica to natural infections of Renicola buchanani sporocysts (Trematoda: Renicolidae). Int. J. Parasitol. 6: 423–431.

    Google Scholar 

  • Yoshino, T.P. and Cheng, T.C (1976) Fine structural localization of acid phosphatase in granu-locytes of the pelecypod Mercenaria mercenaria. Trans. Am. Microsc. Soc. 95: 215–220.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this chapter

Cite this chapter

Větvička, V., Šíma, P. (1998). Protostomes. In: Evolutionary Mechanisms of Defense Reactions. Advances in Life Sciences. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8835-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8835-6_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9793-8

  • Online ISBN: 978-3-0348-8835-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics