Skip to main content

Animals at the cell-aggregate body organization

  • Chapter
Evolutionary Mechanisms of Defense Reactions

Part of the book series: Advances in Life Sciences ((ALS))

  • 63 Accesses

Abstract

Porifera (sponges) are the most primitive metazoans. Approximately 5000 species of sponges are marine sessile animals, only some 150 live in fresh water. Four classes of Porifera are distinguished: the Calcarea (Calcispon-giae), the Hexactinellida (Hyalospongiae), the Demospongiae, and the Sclerospongiae (Bergquist, 1978; Müller et al. 1994b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avenirova, E. L., Rudenskaya, G. N., Filipova, I. Y. and Stepanova, V. M. (1992) Proteinases from gemmules of a freshwater sponge. Biochemistry — Russia 57: 841–847.

    Google Scholar 

  • Bai, R. L., Cichacz, Z. A., Herald, C. L., Pettit, C. L. and Hamel, E. (1993) Spongistatin-1, a highly cytotoxic, sponge-derived, marine natural product that inhibits mitosis, microtubule assembly, and the binding of vinblastine to tubulin. Mol. Pharmacol. 44: 757–766.

    PubMed  CAS  Google Scholar 

  • Bergquist, P. R. (1978) Sponges. University of California Press, Berkeley.

    Google Scholar 

  • Bobzin, S. C. and Faulkner, D. J. (1992) Chemistry and chemical ecology of the Bahamian sponge Aplysilla glacialis. J. Chem. Ecol. 18: 309–332.

    Article  CAS  Google Scholar 

  • Borojevic, R. (1966) Étude expérimentale de la différenciation des cellules de l’éponge au cours de son développement. Develop. Biol. 14: 130–153.

    Article  PubMed  CAS  Google Scholar 

  • Bretting, H. and Konigsmann, K. (1979) Investigation on the lectin-producing cells in the sponge Axinella polyploides (Schmidt). Cell Tissue Res. 201: 487–497.

    Article  PubMed  CAS  Google Scholar 

  • Buscema, M. and van de Vyver, G. (1984) Cellular aspects of alloimmune reaction in sponges of the genus Axinella. I. Axinella polyploides. J. Exp. Zool. 229: 7–17.

    Article  Google Scholar 

  • Buscema, M. and van de Vyver, G. (1985) Cytotoxic rejection of xenografts between marine sponges. J. Exp. Zool. 235: 297–308.

    Article  Google Scholar 

  • Carney, J. R. and Scheuer, P. J. (1993) Popolohuanone-E. A topoisomerase — II inhibitor with selective lung tumor cytotoxicity from the Pohnpei sponge Dysidea sp. Tetrahedron Lett. 34: 3727–3730.

    Article  CAS  Google Scholar 

  • Casapullo, A., Minale, L. and Zollo, F. (1993) Paniceins and related sesquiterpenoids from the mediterranean sponge Reniera fulva. J. Nat. Products 56: 527–533.

    Article  CAS  Google Scholar 

  • Chan, G. W., Francis, T., Thureen, D. R., Offen, PH., Pierce, N. J., Westley, J. W., Johnson, R. K., Faulkner, D. J. and Faulkner, D. R. (1993) Purpurone, an inhibitor of ATP citrate lyase — a novel alkaloid from the marine sponge Iotrochota sp. J. Org. Chem. 58: 2544–2546.

    Article  CAS  Google Scholar 

  • Cimino, C., Crispino, A., Madaio, A., Trivellone, E. and Uriz, M. (1993) Raspacionin-B, a further triterpenoid from the mediterranean sponge Raspaciona aculeata. J. Nat. Products 56: 534–538.

    Article  CAS  Google Scholar 

  • Dopeso, J., Quinoa, E., Riguera, R., Debitus, C. and Bergquist, P.R. (1994) Euryspongiols — 10. New highly hydroxylated 9, 11-secosteroids with antihistaminic activity from the sponge Euryspongia sp. Stereochemistry and reduction. Tetrahedron 50: 3813–3828.

    Article  CAS  Google Scholar 

  • Evans, C. W., Kerr, J. and Curtis, A. S. G. (1980) Graft rejection and immune memory in marine sponges. In: M. J. Manning (ed.): Phylogeny of Immunological Memory, Elsevier/North-Holland Biomed. Press, Amsterdam, pp 27–34.

    Google Scholar 

  • Ey, P. L. and Jenkin, C. R. (1982) Molecular basis of self/non-self discrimination in the inverte-brata. In: N. Cohen and M. M. Sigel (eds): The Reticuloendothelial System, Vol. 3, Plenum Press, New York, pp 321–391.

    Google Scholar 

  • Flam, F. (1994) Chemical prospectors scour the seas for promising drugs. Science 266: 1324–1325.

    Article  PubMed  CAS  Google Scholar 

  • Francis, J. C. and Poirrier, M. A. (1986) Particle uptake in two fresh-water sponge species, Ephydatia fluviatilis and Spongilla alba (Porifera: Spongillidae). Trans. Am. Microsc. Soc. 105: 11–20.

    Article  Google Scholar 

  • Galtsoff, P. S. (1929) Heteroagglutination of dissociated sponge cells. Biol. Bull. 57: 250–260.

    Article  Google Scholar 

  • Gamulin, V., Rinkevich, B., Schacke, H., Kruse, M., Müller, I. M. and Müller, W. E. G. (1994) Cell adhesion receptors and nuclear receptors are highly conserved from the lowest metazoa (Marine sponges) to vertebrates. Biol. Chem. Hoppe-Seyer 375: 583–588.

    Article  CAS  Google Scholar 

  • He, H. Y., Kulanthaivel, P. and Baker, BJ. (1994) New cytotoxic sesterterpenes from the marine sponge Spongia sp. Tetrahedron Lett. 35: 7189–7192.

    Article  CAS  Google Scholar 

  • Hildemann, W. H., Johnston, I. S. and Jokiel, P. L. (1979) Immunocompetence in the lowest meta-zoan phylum: Transplantation immunity in sponges. Science 204: 420–422.

    Article  PubMed  CAS  Google Scholar 

  • Hildemann, W. H., Bigger, C. H., Jokiel, PL. and Johnston, I. S. (1980) Characteristics of immune memory in invertebrates. In: M. J. Manning (ed.): Phylogeny of Immunological Memory, Elsevier/North-Holland Biomed. Press, Amsterdam, pp 9–14.

    Google Scholar 

  • Humphreys, T. (1994) Rapid allogeneic recognition in the marine sponge Microciona prolifera. Implications for evolution of immune recognition. Annals New York Acad. Sci. 712: 342–345.

    Article  CAS  Google Scholar 

  • Johnston, I. and Hildemann, W. H. (1982) Cellular defense systems of the Porifera. In: N. Cohen and M. M. Sigel (eds): The reticuloendothelial System. Vol. 3. Plenum Press, New York, pp 37–57.

    Google Scholar 

  • Kashman, Y, Groweiss, A. and Shmueli, U. (1980) Latrunculin, a new 2-thiazolidinone macrolide from the marine sponge Latrunculia magnifica. Tetrahedron Lett. 21: 3629–3632.

    Article  CAS  Google Scholar 

  • Kinnell, R. B., Gehrken, H. P. and Scheuer, P. J. (1993) Palauamine — a cytotoxic and immuno-suppressive hexacyclic bisguanidine antibiotic from the sponge Stylotella agminata. J. Am. Chem. Soc. 115: 3376–3377.

    Article  Google Scholar 

  • Kobayashi, M., Aoki, S., Sakai, H., Kawazoe, K., Kihara, N., Sasaki, T. and Kitagawa, I. (1993a) Altohyrtin-A, a potent anti-tumor macrolide from the Okinawan marine sponge Hyrtios altum. Tetrahedron Lett. 34: 2795–2798.

    Article  CAS  Google Scholar 

  • Kobayashi, M., Aoki, S., Sakai, H., Kihara, N., Sasaki, T. and Kitagawa, I. (1993b) Altohyrtin-B and altohyrtin-C and 5-desacetylaltohyrtin-A. Potent cytotoxic macrolide congeners of altohyrtin-A, from the Okinawan marine sponge Hyrtios altum. Chem. Pharmaceut. Bull. 41: 989–991.

    Article  CAS  Google Scholar 

  • Kobayashi, M., Uehara, H., Matsunami, K., Aoki, S. and Kitagawa, I. (1993c) Trichoharzin, a new polyketide produced by the imperfect fungus Trichoderma harzianum separated from the marine sponge Micale cecilia. Tetrahedron Lett. 34: 7925–7928.

    Article  CAS  Google Scholar 

  • Koljak, R., Pehk, T., Jarving, I., Liiv, M., Lopp, A., Varvas, K., Vahemets, A., Samel, N. and Lille, U. (1993) New antiproliferative 9, 11-seeosterol from solf coral Gersemia fruticosa. Tetrahedron Lett 34: 1985–1986.

    Article  CAS  Google Scholar 

  • Konig, G. M., Wright, A. D. and Sticher, O. (1992) Four new antibacterial sesterpenes from a marine sponge of the genus Luffariella. J. Nat. Products 55: 174–178.

    Article  CAS  Google Scholar 

  • Kouranvlefoll, E., Laprevote, O., Sevenet, T., Montagnac, A., Pais, M. and Debitus, C. (1994) Phloeodictines A1-A7 and C1-C2. Antibiotic and cytotoxic guanidine alkaloids from the New Caledonian sponge,. Phloeodictyon sp. Tetrahedron 50: 3415–3426.

    Article  Google Scholar 

  • Miao, S., Andersen, R. J. and Allen, T. M. (1990) Cytotoxic metabolites from the sponge Ian-thella hasta collected in Papua New Guinea. J. Nat. Products 53: 1441–1446.

    Article  CAS  Google Scholar 

  • Misevic, G. N. and Burger, M. M. (1993) Carbohydrate-carbohydrate interactions of a novel acidic glycan can mediate sponge cell adhesion. J. Biol. Chem. 268: 4922–4929.

    PubMed  CAS  Google Scholar 

  • Mukai, H. (1992) Allogeneic recognition and sex differentiation in chimeras of the freshwater sponge Ephydatia muelleri. J. Exp. Zool. 264: 298–311.

    Article  Google Scholar 

  • Mukai, H. and Shimoda, H. (1986) Studies on histocompatibility in natural populations of freshwater sponges. J. Exp. Zool. 237: 241–255.

    Article  Google Scholar 

  • Müller, W. E. G., Gamulin, V., Rinkevich, B., Spreitzer, I., Weinblum, D. and Schroder, H. C. (1994a) Ubiquitin and ubiquination in cells from the marine sponge Geodia cydonium. Biol. Chem. Hoppe-Seyer 375: 53–60.

    Article  Google Scholar 

  • Müller, W. E. G., Muller, I. M. and Gamulin, V. (1994b) On the monophyletic evolution of the metazoa. Brazilian J. Med. Biol. Res. 27: 2083–2096.

    Google Scholar 

  • Nakao, Y., Matsunaga, S. and Fusetani, N. (1993a) Toxadocials B, C and toxadocicc acid a — thrombin-inhibitory aliphatic tetrasulfates from the marine sponge, Toxadocia cylindrica. Tetrahedron 49: 11183–11188.

    Article  CAS  Google Scholar 

  • Nakao, Y., Matsunaga, S. and Fusetani, N. (1993b) Toxadocial A-a novel thrombin inhibitor from the marine sponge Toxadocia cylindrica. Tetrahedron Lett. 34: 1511–1514.

    Article  CAS  Google Scholar 

  • Pettit, G. R., Tan, R., Gao, F., Williams, M. D., Doubek, D. L., Boyd, M. R., Schmidt, J. M., Cha-puis, J. C., Hamel, Bai, E., Hooper, J. N. A. and Tackett, L. P. (1993) Isolation and structure of halistatin-1 from the eastern Indian ocean marine sponge Phakellia carteri. J. Org. Chem. 58: 2538–2543.

    Article  CAS  Google Scholar 

  • Pettit, G. R., Gao, F., Cerny, R. L., Doubek, D. L., Tackett, L. P, Schmidt, J. M. and Chapuis, J. C. (1994) Antineoplastic agents 278. Isolation and structure of axinastatins 2 and 3 from Western Caroline Island marine sponge. J. Med. Chem. 37: 1165–1168.

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer, K., Schroder, H. C., Rinkevich, B., Uhlenbruck, G., Hanisch, F. G., Kurelec, B., Scholz, P. and Muller, W. E. G. (1992) Immunological and biological identification of tumor necrosis-like factor in sponges: endotoxin that mediates necrosis formation in xenografts. Cytokine 4: 161–169.

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer, K., Frank, W., Schroder, H. C., Gamulin, V., Rinkevich, B., Batel, R., Muller, I. M. and Muller, W. E. G. (1993) Cloning of the polyubiquitin cDNA from the marine sponge Geodia cydonium and its preferential expression during reaggregation of cells. J. Cell Sci. 106: 545–554.

    PubMed  CAS  Google Scholar 

  • Proksch, P. (1994) Defensive roles for secondary metabolites from marine sponges and sponge-feeding Nudibranchs. Toxicon 32: 639–655.

    Article  PubMed  CAS  Google Scholar 

  • Spillmann, D., Hard, K., Thomasoates, J., Vliegenthart, J. F. G., Misevic, G., Burger, M. M. and Finne, J. (1993) Characterization of a novel pyruvylated carbohydrate unit implicated in the cell aggregation of the marine sponge Microciona prolifera. J. Biol. Chem. 268: 13378–13387.

    PubMed  CAS  Google Scholar 

  • Sullivan, B., Djura, P., Mclntyre, D. E. and Faulkner, D. J. (1981) Antimicrobial constituents of the sponge Siphonodictyon coralliphagum. Tetrahedron 37: 979–982.

    Article  CAS  Google Scholar 

  • Takei, M., Umeyama, A., Shoji, N., Arihara, S. and Endo, K. (1993) Mechanism of inhibition of IgE-dependent histamine release from rat mast cells by xestobergsterol A from the Okinawan marine sponge Xestospongia bergquistia. Experientia 49: 145–149.

    Article  PubMed  CAS  Google Scholar 

  • Teeyapant, R., Woerdenbag, H. J., Kreis, P., Hacker, I, Wrav, V., Witte, L. and Proksch, P. (1993a) Antibiotic and cytotoxic activity of brominated compounds from the marine sponge Verongia aerophora. Z. Naturforsch. 48: 939–945.

    CAS  Google Scholar 

  • Teeyapant, R., Kreis, P., Wray, V., Witte, L. and Proksch, P. (1993b) Brominated secondary compounds from the marine sponge Verongia aerophoba and the sponge feeding gastropod Tylodina pervesa. Z. Naturforsch. 48c: 939–945.

    Google Scholar 

  • Thompson, J. E. (1985) Exudation of biologically-active metabolites in the sponge Aplysina fistularis. I. Biological evidence. Marine Biol. 88: 23–26.

    Article  CAS  Google Scholar 

  • Van de Vyver, G. (1981) Organisms without special circulatory systems. In: N. A. Ratcliffe and A. E Rowley (eds.): Invertebrate Blood Cells, Vol. 1, Academic Press, New York, pp 19–32.

    Google Scholar 

  • Vasta, G. R. (1991) The multiple biological roles of invertebrate lectins: their participation in nonself recognition mechanisms. In: W. G. Warr and N. Cohen (eds): Phylogenesis of Immune function, CRC Press, Boca Raton, pp 73–202.

    Google Scholar 

  • Wissenfels, N. (1976) Bau und Funktion des Süsswasserschwamms Ephydatia fluviatilis. III. Nahrungsaufnahme, Verdauung und Defakation. Zoomorph. 85: 73–88.

    Article  Google Scholar 

  • Willenz, P. (1980) Y. Tiffon (eds): Nutrition in the Lower Metazoa, Pergamon Press, Oxford, pp 163–1

    Google Scholar 

  • Wilson, E. V. (1907) On some phenomena of coalescence and regeneration in sponges. J. Exp. Zool. 5: 245–258.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this chapter

Cite this chapter

Větvička, V., Šíma, P. (1998). Animals at the cell-aggregate body organization. In: Evolutionary Mechanisms of Defense Reactions. Advances in Life Sciences. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8835-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8835-6_2

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9793-8

  • Online ISBN: 978-3-0348-8835-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics