Skip to main content

Nanotiterplates for screening and synthesis

  • Chapter
Microsystem Technology

Part of the book series: BioMethods ((BIOMETHODS))

Abstract

Biomolecular processing includes the crosslinked handling of substances and information. Analytical information has to be extracted from solutions and from a lot of different sources. Structural information has to be extracted from molecules, kinetic information from interaction or decomposition processes. The need of conversion between matter and information consists in the opposite direction, too. Mechanistic concepts and kinetic calculations have to be converted in new synthesis, structural concepts have to be realized in new molecules, new materials, and particularly, sequence information must be converted in biomolecular tools, like substances for new diagnostic tests, for new therapeutics, for new bioanalogous types of materials, and for synthetic enzymes for technical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gallop MA, Barrett RW, Dower WJ, Fodor SPA, Gordon EM (1994) Applications of combinatorial technologies to drug discovery: 1. Background and peptide combinatorial libraries. J Med Chem 37 (9): 1233–1251

    Article  PubMed  CAS  Google Scholar 

  2. Gordon EM, Barrett RW, Dower WJ, Fodor SPA, Gallop MA (1994) Applications of combinatorial technologies to drug discovery: 2. Combinatorial organic synthesis, library screening strategies, and future directions. J Med Chem 37 (10): 1385–1401

    Article  PubMed  CAS  Google Scholar 

  3. Jacobs JW, Fodor SPA (1994) Combinatorial chemistry-applications of light-directed chemical synthesis. TibTech 12: 19–26

    Article  CAS  Google Scholar 

  4. Elson EL, Magde D (1974) Biopolymers 13: 1–27 and 29–61

    Google Scholar 

  5. Rigler R, Mets U, Widengren J, Kask P (1993) Fluorescence correlation spectroscopy with high count rate and low background: analysis of translation diffusion. Eur Biophys J 22: 169–175

    Article  CAS  Google Scholar 

  6. Eigen M, Rigler R (1994) Sorting single molecules: Application to diagnostics and evolutionary biotechnology. Proc Natl Acad Sci USA 91: 5740–5747

    Article  PubMed  CAS  Google Scholar 

  7. Gradl G et al; this volume

    Google Scholar 

  8. Heuberger A, Lochel B (1996) Optical DUV-lithography for high microstructures. Microsystem Techno 1 3:1–6

    Article  Google Scholar 

  9. Kroy W, Seidel H, Dette E, Deimel P, Binder F, Hilpert R, Koniger M. Mikro-mechanische Struktur. German patent: DE 3915920 Al (16.5. 1989 /22. 11. 1990 )

    Google Scholar 

  10. Becker EW, Ehrfeld W, Hagmann P, Maner A, Miinchmeyer D (1986) Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming and plastic molding (LIGA process). Microelectronic Engineering 4: 35–56

    Article  CAS  Google Scholar 

  11. Ehrfeld W, Hagemann P, Mohr J, Münchmeyer D. Verfahren zur Herstellung eines Filters (13.2.87). German patent: DE 3704546/European patent: EP 0278059 B1 vom 15.7.92)

    Google Scholar 

  12. Ruther P, Bacher W, Feit K, Heckele M, Weindel K (1994) LIGA- made pneumati-cally driven micro-actuator for use in a micro-testing system. Proc of Micro System Technol ’84, Berlin, 1994, H Reichl, A Heuberger (eds), VDE-Verlag, Berlin- Offenbach, p 899

    Google Scholar 

  13. Weibezahn KF, Knedlitschek G, Bier W, Schaller Th (1994) Mechanically processed microstructures used to establish an in vitro tissue model. Proc of Micro System Technol ’84, Berlin 1994, H Reichl, A Heuberger (eds), VDE-Verlag, Berlin-Offenbach, p 873

    Google Scholar 

  14. Köhler JM, Mayer G, Poser S, Schulz T, Schober A (1996) Chip elements for combi-natorial chemistry, fluid processing and PCR. Proc of Micro System Technologies 96, Potsdam, Germany, 17./19.9. 96, H Reichl, A Heuberger (eds), VDE-Verlag, p 693

    Google Scholar 

  15. Petersen KE (1982) Silicon as a mechanical material. Proc IEEE 70 (5): 420

    Article  CAS  Google Scholar 

  16. Sato K, Kawamura Y, Tanaka S, Uchida K, Kohida H (1990) Individual and mass Operation of biological cells using micromecha-nical Silicon devices. Sensors and Actuators A 21–23: 948–953

    Google Scholar 

  17. Schober A, Schlingloff G, Thamm A, Vetter D, Tomandl D, Gebinoga M, Kiel HJ, Scheffler Ch, Döring M, Köhler JM, Mayer G (1996) Systemintegration of microsys-tems/chip elements in miniaturized auto-mata for high-throughput synthesis and Screening in biology, biochemistry and chemistry. Proc of Micro System Technologies 96 (MST), Potsdam, Germany, 17.-19.9. 96, H Reichl, A Hellberger (eds), VDE-Verlag, p 705–710

    Google Scholar 

  18. Jäckel K-P (1996) Microtechnology: Application opportunities in the chemical industry. In: W Ehrfeld (ed): Microsystem technology for chemical and biological microreactors. DECHEMA monographs vol. 132, p 29–50, VCH Weinheim, Basel, Cambridge, New York

    Google Scholar 

  19. Ehrfeld W, Hessel V, Möbius H, Richter Th, Russow K (1996) Potentials and realization of microreactors. In: W Ehrfeld (ed): Microsystem technology for chemical and biological microreactors. DECHEMA monographs vol. 132, p 1–28, VCH Weinheim, Basel, Cambridge, New York

    Google Scholar 

  20. Köhler JM, Schober A, Schwienhorst A (1994) Micromechanical elements for micro-chemical systems. Exp Tech Phys 40 (1): 35–56

    Google Scholar 

  21. Atkins PW (1986) Physical chemistry. 3rd ed, p 674 ff, Oxford University Press

    Google Scholar 

  22. Döring M (1991) Flü;ssigkeiten mikrofein dosieren. F & M 99(11): 459–463 (in German)

    Google Scholar 

  23. Bean KE (1978) Anisotropie etching of Silicon. IEEE Trans Electr Dev ED-25 (10): 1185

    Article  CAS  Google Scholar 

  24. Seidel H, Csepregi L, Heuberger A, Baum-gärtel H (1990) Anisotropie etching of crystalline Silicon in alkaline solutions: I. Orientation dependence and behavior of passivation layers. J Electrochem Soc 137(11): 3612;

    Article  CAS  Google Scholar 

  25. H Seidel, L Csepregi, A Heuberger, H Baumgärtel (1990) Anisotropie etching of crystalline Silicon in alkaline solutions: II. Infiuence of dopants. J Electrochem Soc 137 (11): 3626

    Google Scholar 

  26. Kendall DL (1979) Vertical etching of Silicon at very high aspect ratios. RA Huggins (ed): Ann Rev Mater Sei 9: 373

    Google Scholar 

  27. Price JB (1973) In: Semiconductor Silicon. HR Huff, RR Burgess (eds): The Electro-chemical Society Softbound Proceedings Series. Princeton, NJ, p 339

    Google Scholar 

  28. Zangwill A (1988) Physics at surfaces. Cambridge University Press, Cambridge, MA, p 91

    Google Scholar 

  29. Palik ED, Bermudez VM, Glembocki OJ (1985) J Electrochem Soc 132: 871

    Article  Google Scholar 

  30. Kendall DL, de Guel GR (1985) Orientation of the third kind: The Coming age of (HO) Silicon. In: CD Fung, PW Cheung, WH Ko, DG Fleming (ed): Micromachining and micropackaging of transducers, Elsevier p107–124

    Google Scholar 

  31. Völklein F (1990) Thermal conductivity and diffusivity of a thin film Si02-Si3N4 sandwich system. Thin Solid Films 188: 27–33

    Article  Google Scholar 

  32. Meinel W, Müller J, Keßler E, Völklein F, Wiegand A (1988) Multijunction thin-film radiation thermopile sensors. Measurements 6: 2–4

    Google Scholar 

  33. Elbel Th, Müller JE, Völklein F (1985) Miniaturisierte thermische Strahlungssensoren: Die neue Thermosäule TS 50.1. Feingerätetechnik 34: 113–115 (in German)

    Google Scholar 

  34. Sarro L (1994) Thermal sensors. In: GCM Meijer, AW van Herwaarden (eds): Institute of Physics Publishing, p 154

    Google Scholar 

  35. Steinke SO, Schulz T, Köhler JM (1995) Mikromechanischer Modul für den Stoffaustausch zwischen zwei flüssigen Phasen. Proc of Mikrosystemtechnik, Mikrome-chanik & Mikroelektronik, Chemnitz, 16.- 17.10.1995, p 121–129 (in German)

    Google Scholar 

  36. Fink H-W, Schmid H, Ermantraut E, Schulz, T (1997) Electron holography of individual DNA molecules, aeeepted for publication in J Am Opt Soc A

    Google Scholar 

  37. Wallis G, Pomerantz, DI (1969) Field as-sisted glass-metal sealing. J Appl Phys 40: 3946–3949

    Article  CAS  Google Scholar 

  38. Kanda Y, Matsuda K, Murayama C, Sugaya J (1990) The mechanism of field-assisted silicon-glass bonding. Sensors and Actuators A21–23: 939–943

    Google Scholar 

  39. Hanneborg A (1991) Silicon wafer bonding techniques for assembly of micromechanical elements. Proc ofMEMS, Nara, Jpn, IEEE, p 92

    Google Scholar 

  40. Hachitani Y, Sagara H (1993) Glass sub-strates for Silicon sensors. Proc of Trans-ducers ’83,7.-10. 6. 93

    Google Scholar 

  41. Hilgendorf K, Krause P, Obermeier E (1996) Reduction of the influence of the anodic bonding process on the behavior of pressure sensors by using new glass substra-tes. Proc of Micro System Technologies (MST) 96, Potsdam, Germany, 17.-19.9. 96, H Reichl, A Heuberger (eds), VDE-Verlag, p 331–336

    Google Scholar 

  42. Baier V, Schmidt K, Straube B, Horst H-J (1997) Anodic bonding at low temperatures using microstructurable Li-doped glass. Proc of 192nd Meeting of The Electro-chemical Society, Paris, France, 31.8.- 5.9. 97

    Google Scholar 

  43. Hanneborg A, Nese M, Jakobsen H, Holm R (1992) Silicon-to-thin film anodic bonding. L Micromech Microeng 2: 117

    Article  CAS  Google Scholar 

  44. Brooks AD, Donovan RP, Hardesty CA (1972) Low-temperature electrostatic silicon-to-silicon seals using sputtered borosilicate glass. J Electrochem Soc 119 (4): 545

    Article  CAS  Google Scholar 

  45. Esashi M, Nakano A, Shoji S, Hebiguchi H (1990) Low-temperature silicon-to-silicon anodic bonding with intermediate low melting point glass. Sensors and Actuators A 21–23: 931–934

    Google Scholar 

  46. Choi W-B, Ju B-K, Lee Y-H, Haskard MR, Sung M-Y, Oh M-H (1997) Anodic bonding technique under low temperature and low voltage using evaporated glass. J Vac Sei TechnolB 15 (2): 477–481

    Article  CAS  Google Scholar 

  47. Wallis G (1975) Field assisted glass sealing. Electrocomponent Science and Technology 2 (1): 45

    Article  CAS  Google Scholar 

  48. Maas D, Fahrenberg J, Keller W, Mihalj G, Seidel D (1994) Applicability of anodic and adhesive bonding to join microstructures consisting of various materials. Proc of Micro System Technol. ’84, Berlin, 1994, H Reichl, A Heuberger (eds), VDE-Verlag, Berlin-Offenbach, p 481

    Google Scholar 

  49. Oikawa M et al (1991) Miniature and micro-optics: Fabrication and system applications. Proc SPIE 1544: 226–236

    Article  Google Scholar 

  50. Karthe W, Göring R, Kley EB (1994) Micro-optical elements: fabrication and applica-tion. Proc of Micro System Technol ’84, Berlin, Germany, 19.-21.10. 94: H Reichl, A Heuberger (eds), VDE-Verlag, Berlin- Offenbach, p 1047–1053

    Google Scholar 

  51. Göttert J, Fischer M, Müller A (1995) High-aperture surface relief microlenses fabricat-ed by X-ray lithography and melting. In: D Daly (ed): Microlens arrays. EOS Topical Meeting Digest Series Vol. 5, Teddington, UK

    Google Scholar 

  52. Elderstig H, Arvidsson G, Forssen L, Hen-riksson P, Laureil F, Palmskog G, Tikkanen G (1994) Silicone as an optical material. Proc of Micro System Technol ’84, Berlin, 1994, H Reichl, A Heuberger (eds), VDE- Verlag, Berlin-Offenbach, p 1055

    Google Scholar 

  53. Hülsenberg D (1992) Glas in der Mikro-technik. In: Sitzungsberichte der Sächs. Akad Wiss, math-naturwiss Klasse, Band 123, Heft 6, p 3, Akademie Verlag (in German)

    Google Scholar 

  54. Dietrich TR, Ehrfeld W, Lacher M, Krämer M, Speit B (1996) Fabrication technologies for microsystems using photoetchable glass. Micoelectronic Engineering 30: 497–504

    Article  CAS  Google Scholar 

  55. Hülsenberg D, Bruntsch R, Schmidt K, Reinhold F (1990) Mikromechanische Bearbeitung von fotoempfindlichem Glas. Silikattechnik 41(11): 364–366 (in German)

    Google Scholar 

  56. Legtenberg R, Tilmans HAC, Eiders J, Elwenspoek M (1994) Stiction of surface micromachined struetures after rinsing and drying: model and investigation of adhesion mechanisms. Sensors and Actuators A 43: 230–238

    Article  CAS  Google Scholar 

  57. Bauer J, Drescher G, Illig M (1996) Surface tension, adhesion and wetting of materials for photolithographic process. J Vac Sei Technol B 14 (4): 2485–2492

    Article  CAS  Google Scholar 

  58. Chidsey CED, Loiacono DN (1990) Chemical functionality in self-assembled monolayers: Structural and electrochemical Properties. Langmuir 6: 682–691

    Article  CAS  Google Scholar 

  59. Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plate surfaces Ann Bot 79: 667–677

    Article  Google Scholar 

  60. Shibuichi S, Onda T, Satoh N, Tsuji K. Super water-repellent surfaces resulting from fractal structure (1996) Phys Chem 100: 19512–19517

    Article  CAS  Google Scholar 

  61. Whitesides GM, Mathias, JP, Seto ChrT (1991) Molecular self-assembly and nano-chemistry: A chemical stragtegy for the synthesis of nanostructures. Science 254: 1312

    Article  PubMed  CAS  Google Scholar 

  62. Mrksich M, Whitesides, GM (1995) Patterning self-assembled monolayers using micro-contact printing: a new technology for biosensors? TIBTech 13 (6): 228–235

    Article  CAS  Google Scholar 

  63. Ulman A (1991) An introduction to ultra-thin organic films: from Langmuir-Blodgett to self-assembly. Academic Press, San Diego, p 288 ff

    Google Scholar 

  64. Kumar A, Biebuyck HA, Whitesides GM (1994) Patterning self-assembled monolayers: Applications in material sciences. Langmuir 10: 1498–1511

    Article  Google Scholar 

  65. Arzt E, Kraft O, Möckl UE (1996) Metalle unter Extrembedingungen. Physikal Blätter 52(3): 227–231 (in German)

    Google Scholar 

  66. Dijksman JF (1984) Hydrodynamics of small tubular pumps. / Fluid Mech 139: 173–191

    Article  Google Scholar 

  67. Schober A, Günther R, Schwienhorst A, Döring M, Lindemann BF (1993) Accurate high speed liquid handling of very small biological samples. Biotechniques 15 (2): 324

    Google Scholar 

  68. Schwesinger N (1993) Planarer Tinten-strahldruckkopf mit piezokeramischem Antrieb. F & M 101(11–12): 456–460 (in German)

    Google Scholar 

  69. Fiehn H, Howitz S, Wegener Th (1997) Eine neue Technologie für die Präzisionsdosierung von Flüssigkeiten im Submikroliter-bereich. BlOforum (1–2): 22–25 (in German)

    Google Scholar 

  70. Krause P, Obermeier E, Wehl W (1995) Backshooter-a new smart micromachined single-chip inkjet printhead. Proc of 8th Int Conf on Solid-State Sensors and Actuators/ Eurosensors IX, Stockholm, Sweden, 25.- 29.6. 95, p 325–328

    Article  Google Scholar 

  71. Howitz S. Components and systems for microliquid handling, this volume

    Google Scholar 

  72. Mayer G, Köhler JM (1997) Micromecha-nical compartments for biotechnological ap-plications: Fabrication and investigation of liquid evaporation. Sensors and Actuators A 60: 202–207

    Google Scholar 

  73. Mayer G, Tuchscheerer J, Kaiser Th, Wohl-fart K, Ermantraut E, Köhler JM (1997) Nano titer plates: Micro compartment arrays for biotechnological applications. In: W Ehrfeld (ed) Microreaction Technology-Proc. of the First Int. Conf. on Microreaction Technology, Springer-Verlag p112–119

    Google Scholar 

  74. Fodor JPA, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D (1991) Light-directed, spati-ally addressable parallel chemical synthesis. Science 251: 76

    Article  Google Scholar 

  75. Schober A, Schwienhorst A, Köhler JM, Fuchs M, Günther R, Thürk M (1995) Microsystems for independent parallel chemical and biological processing. Microsystem Technol 1: 168

    Article  Google Scholar 

  76. Schober A et al, unpublished

    Google Scholar 

  77. Eigen M, Gardener jr WC (1984) Evolu-tionary molecular engineering based on RNA replication. Pure and Appl Chem 56 (8): 967

    Article  CAS  Google Scholar 

  78. Eigen M (1986) The physics of macromole-cular evolution. Chemica Scripta 26 B: 13

    Google Scholar 

  79. Schuster P (1996) Evolutionary biotechno-logy-theory, facts and perspectives. Acta Biotechnol 16: 3–17

    Article  CAS  Google Scholar 

  80. Beaudry AA, Joyce GF (1992) Directed evolution of an RNA enzyme. Science 257: 635–641

    Article  PubMed  CAS  Google Scholar 

  81. Köhler JM, Pechmann R, Schaper A, Schober A, Jovin ThM, Schwienhorst A (1995) Micromechanical elements for Detection of molecules and molecular design. Microsystem Technol 1: 202

    Article  Google Scholar 

  82. Breaker RR, Joyce GF (1994) Emergence of a replicating species from an in vitro RNA evolution reaction. Proc Natl Acad Sei USA 91: 6093–6097

    Article  CAS  Google Scholar 

  83. Gebinoga M, Oehlschläger F (1996) Comparison of self-sustained sequence replication reaction systems. Eur J Biochem 235: 256–261

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Mayer, G., Wohlfart, K., Schober, A., Köhler, J.M. (1999). Nanotiterplates for screening and synthesis. In: Köhler, J.M., Mejevaia, T., Saluz, H.P. (eds) Microsystem Technology. BioMethods. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8817-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8817-2_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9784-6

  • Online ISBN: 978-3-0348-8817-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics