Skip to main content

Computer modeling of protein, nucleic acid, and drug structures

  • Chapter
Microsystem Technology

Part of the book series: BioMethods ((BIOMETHODS))

  • 154 Accesses

Abstract

Microsystem technology is devoted to the handling of small amounts of chemicals and biochemicals. It can assist and is in fact a necessary requirement for all types of automatic processes including optimization. In addition to the technological aspects a basic understanding of the molecular structures to be processed is a sine qua non for the successful automatization in general and for the optimization of desired functions in particular. Computer modeling of biopolymer and drug structures has already proven to be helpful and becomes even more important if large numbers of structures are to be processed. Molecular modeling can also contribute to the design of nanostructures (Russell et al., 1997; Stupp et al., 1997). This aspect is beyond the scope of this contribution, however. Therefore, this chapter is focused on the application of computational and theoretical approaches to the structure modeling of proteins, nucleic acids, and drugs. It covers a relatively broad subject and cannot be very specific or comprehensive. Rather, it is intended as an introductory reading to modeling techniques and their application. More in-depth information should easily be possible both via the references and the sampling of web resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen FH, Kennard O (1993) 3D search and research using the Cambridge Structural Database. Chemical Design Automation News 8: 31–37

    Google Scholar 

  • Bairoch A, Apweiler R (1997) The SWISSPROT protein sequence data bank and its supplement TrEMBL. Nucl Acids Res25: 31–36

    Article  PubMed  CAS  Google Scholar 

  • Bartolotti LJ, Flurchick K (1996) An introduction to density functional theory. In: KB Lipkowitz, DB Boyd (eds): Reviews in computational chemistry. VCH Publishers, Inc, New York, Vol. 7: 187–216

    Google Scholar 

  • Barton GJ (1995) Protein secondary structure prediction. Curr Opinion Struct Biol5: 372–376

    Article  CAS  Google Scholar 

  • Bamborough P, Cohen FE (1996) Modeling protein-ligand complexes. Curr Opinion Struct Biol6: 236–241

    Article  CAS  Google Scholar 

  • Benton D (1996) Bioinformatics–principles and potential of a new multidisciplinary tool. Trends Biotechnol14: 261–273

    Article  PubMed  CAS  Google Scholar 

  • Berman HM, Olson WK, Beveridge DI, Westbrook J, Gelbin A, Demeny T, Hsieh SH, Srinivasan AR, Schneider B (1992) The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys J63: 751–759

    Article  PubMed  CAS  Google Scholar 

  • Bernstein FC, Koetzle TF, Williams GJ, Meyer EE, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The Protein Data Bank: a computer-based archival file for macromolecule structures. J Mol Biol 112: 535 - 542

    Article  PubMed  CAS  Google Scholar 

  • Blondelle SE, Houghten RA (1996) Novel antimicrobial compounds identified using synthetic combinatorial library technology. Trends Biotechnol14: 60–65

    Article  PubMed  CAS  Google Scholar 

  • Böhm H-J (1996) Current computational tools for de novoligand design. Curr Opinion Biotechnol7: 433–436

    Article  Google Scholar 

  • Boyd DB (1990) Aspects of molecular modeling. In: KB Lipkowitz, DB Boyd (eds): Reviews in computational chemistry. VCH Publishers, Inc., New York, Vol. I: 321–354

    Chapter  Google Scholar 

  • Brickmann J, Vollhardt H (1996) Virtual reality on the world-wide web: a paradigm shift in molecular modeling? Trends Biotechnol14: 167–172

    Article  CAS  Google Scholar 

  • Brimacombe R (1995) The structure of ribosomal RNA: a three-dimensional jigsaw puzzle. Eur J Biochem230: 365–383

    Article  PubMed  CAS  Google Scholar 

  • Breaker RR (1996) Are engineered proteins getting competition from RNA? Curr Opinion Biotechnol7: 442–448

    Article  CAS  Google Scholar 

  • Brooks BR, Bruccoleri R, Olafson B, States D, Swaminathan S, Karplus M (1983) CHARMm: a program for macromolecular energy, minimization, and dynamics calculations. J Comp Chem4: 187–193

    Article  CAS  Google Scholar 

  • Brooks III CL (1995) Methodological advances in molecular dynamics simulations of biological systems. Curr Opinion Struct Biol5: 211–215

    Article  CAS  Google Scholar 

  • Caspar DL (1995) Problems in simulating macromolecular movements. Structure3: 327–329

    Article  PubMed  CAS  Google Scholar 

  • Cate JH, Gooding AR, Podell E, Zhou K, Golden BI, Kundrot CE, Cech TR, Doudna JA (1996) Crystal structure of a group I ribozyme domain: principles of RNA packing. Science273: 1678–1685

    Article  PubMed  CAS  Google Scholar 

  • Cech T (1992) Ribozyme engineering. Curr Opinion Struct Biol2: 605–609

    Article  CAS  Google Scholar 

  • Chapman D (1996) The measurement of molecular diversity: A three-dimensional approach. J Comput-Aided Mol Design10: 501–502

    Article  CAS  Google Scholar 

  • Chiu W, Schmid MF (1997) Pushing back the limits of electron cryomicroscopy. Nature Struct Biol4: 331–334

    Article  PubMed  CAS  Google Scholar 

  • Cho MJ, Juliano R (1996) Macromolecular versus small-molecule therapeutics: drug discovery, development and clinical considerations. Trends Biotechnol14: 153–158

    Article  PubMed  CAS  Google Scholar 

  • Choo Y, Klug A (1997) Physical basis of a protein-DNA recognition code. Curr Opinion Struct Biol7: 117–125

    Article  CAS  Google Scholar 

  • Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz Jr., KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation forcefield for the simulation of proteins, nucleic acids and organic molecules. J Am Chem Soc117: 5179–5197

    Article  CAS  Google Scholar 

  • Cramer RD III, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). I. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc110: 5959–5967

    Article  PubMed  CAS  Google Scholar 

  • Defay T, Cohen FE (1995) Evaluation of current techniques for ab initioprotein structure prediction. Proteins23: 431–445

    Article  PubMed  CAS  Google Scholar 

  • DeRosier DJ, Harrison SC (1997) Macromolecular assemblages. Sizing things up. Curr Opinion Struct Biol7: 237–238

    Article  CAS  Google Scholar 

  • Elber R (1996) Novel methods for molecular dynamics simulations. Curr Opinion Struct Biol6: 232–235

    Article  CAS  Google Scholar 

  • Edwards PD, Andisik DW, Strimpler AM, Gomes B, Tuthill PA (1996) Nonpeptidic inhibitors of human neutrophil elastase. 7. Design, synthesis, and in vitroactivity of a series of pyridopyrimidine trifluoromethyl ketones. J Med Chem39: 1112–1124

    Article  PubMed  CAS  Google Scholar 

  • Erickson J, Neidhart DJ, VanDrie J, Kempf DJ, Wang XC, Norbeck DW, Plattner JJ, Rittenhouse JW, Turon M, Wideburg N, Kohlbrenner WE, Swimmer R, Helfrich R, Paul DA, Knigge M (1990) Design, activity, and 2.8 A crystal structure of a C2 symmetric inhibitor complexed with HIV-1 protease. Science249: 527–533

    Article  PubMed  CAS  Google Scholar 

  • Evans SV (1993) SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. J Mol Graphics11: 134–138

    Article  CAS  Google Scholar 

  • Feigon J, Dieckmann T, Smith FW (1996) Aptamer structures form A to ξ Chemistry & Biology3: 611–617

    Article  CAS  Google Scholar 

  • Frank J (1997) The ribosome at higher resolution -the donut takes shape. Curr Opinion Struct Biol7: 266–272

    Article  CAS  Google Scholar 

  • Gallop MA, Barrett RW, Dower WJ, Fodor SPA, Gordon EM (1994) Application of combinatorial technologies to drug discovery. Background and peptide combinatorial libraries. J Med Chem37: 1233–1251

    Article  PubMed  CAS  Google Scholar 

  • Gautheret D, Damberger SH, Gutell RR (1995) Identification of base-triples in RNA using comparative sequence analysis. J Mol Biol248: 27–43

    Article  PubMed  CAS  Google Scholar 

  • Gilbert W (1991) Towards a paradigm shift in biology. Nature349: 99

    Article  PubMed  CAS  Google Scholar 

  • Gold L (1995) Oligonucleotides as research, diagnostic and therapeutic agents. J Biol Chem270: 13581–13584

    PubMed  CAS  Google Scholar 

  • Gold L, Brown D, He Y-Y, Shtatland T, Singer BS, Wu Y (1997) From oligonucleotide shapes to genomic SELEX: Novel biological regulatory loops. Proc Natl Acad Sci94: 59–64

    Article  PubMed  CAS  Google Scholar 

  • Green SM, Marshall GR (1995) 3D-QSAR: a current perspective. Trends Pharmacol Sci 16: 285–291

    Article  PubMed  CAS  Google Scholar 

  • Guida WC (1994) Software for structure-based drug design. Curr Opinion Struct Biol4: 777–781

    Article  CAS  Google Scholar 

  • Hall SH (1995) Protein images update natural history. Science267: 620–624

    Article  PubMed  Google Scholar 

  • Hogan Jr. JC (1997) Combinatorial chemistry in drug discovery. Nature Biotechnol15: 328–330

    Article  CAS  Google Scholar 

  • Jernigan RL, Bahar I (1996) Structure-derived potentials and protein simulations. Curr Opinion Struct Biol6: 195–209

    Article  CAS  Google Scholar 

  • Joshua-Tor L, Sussman JK (1993) The coming of age of DNA crystallography. Curr Opinion Struct Biol3: 323–325

    Article  CAS  Google Scholar 

  • Karp PD (1996) Database links are a foundation for interoperability. Trends Biotechnol14: 273–279

    Article  PubMed  CAS  Google Scholar 

  • Karplus M, Petsko GA (1990) Molecular dynamics simulations in biology. Nature347: 631–639

    Article  PubMed  CAS  Google Scholar 

  • Konings DAM, Gutell RR (1995) A comparison of thermodynamic foldings with comparatively derived structures of 16S and 16S like RNAs. RNA1: 559–574

    PubMed  CAS  Google Scholar 

  • Lattman EE (ed) (1995) Protein structure prediction: a special issue. Proteins23: 295–460

    Article  Google Scholar 

  • Lemer CM, Rooman MJ, Wodak SJ (1995) Protein structure prediction by threading methods: evaluation of current techniques. Proteins23: 337–355

    Article  PubMed  CAS  Google Scholar 

  • Lipkowitz KB, Boyd DB (eds): Reviews in Computational Chemistry, VCH Publishers

    Google Scholar 

  • Liu H, Müller-Plathe F, Van Gunsteren WF (1996) A combined quantum/classical molecular dynamics study of the catalytic mechanism of HIV protease. J Mol Biol261: 454–469

    Article  PubMed  CAS  Google Scholar 

  • Louise-May S, Auffinger P, Westhof E (1996) Calculations of nucleic acid conformations. Curr Opinion Struct Biol6: 289–298

    Article  CAS  Google Scholar 

  • Luthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature356: 83–85

    Article  PubMed  CAS  Google Scholar 

  • Lyall A (1996) Bioinformatics in the pharmaceutical industry. Trends Biotechnol14: 308–312

    Article  PubMed  CAS  Google Scholar 

  • Madej T, Boguski MS, Bryant SH (1995) Threading analysis suggests that the obese gene product may be a helical cytokine. FEBS Lett373: 13–18

    Article  PubMed  CAS  Google Scholar 

  • Michel F, Westhof E (1990) Modeling of the three-dimensional architecture of group I catalytic introns based on comparative equence analysis. J Mol Biol216: 585–610

    Article  PubMed  CAS  Google Scholar 

  • Mosimanu S, Meleshko R, James MNG (1995) A critical assessment of comparative molecular modeling of tertiary structures of proteins. Proteins23: 301–317

    Article  Google Scholar 

  • Moult J (1996) The current state of the art in protein structure prediction. Curr Opinion Biotechnol7: 422–427

    Article  CAS  Google Scholar 

  • Moult J (1997) Comparison of database potentials and molecular mechanics force fields. Curr Opinion Struct Biol7: 194–199

    Article  CAS  Google Scholar 

  • Murray CW, Clark DE, Auton TR, Firth MA, Li J, Sykes RA, Waszkowycz B, Young SC (1997) PRO-SELECT: Combining structure-based drug design and combinatorial chemistry for rapid lead discovery. 1. Technology. J Comput-Aided Mol Design11: 193–207

    Article  CAS  Google Scholar 

  • Murray-Rust P (1994) Bioinformatics and drug discovery. Curr Opinion Biotechnol5: 648–653

    Article  Google Scholar 

  • Neidle S (1997) Crystallographic insights into DNA minor groove recognition by drugs. Biopolymers44: 105–121

    Article  CAS  Google Scholar 

  • Olson WK (1996) Simulating DNA at low resolution. Curr Opinion Struct Biol6: 242–256

    Article  CAS  Google Scholar 

  • Palsson OP (1997) What lies beyond bioinfor- matics? Nature Biotechnology15: 3–4

    Article  PubMed  CAS  Google Scholar 

  • Peitsch MC, Wells TN, Stampf DR, Sussman JL (1995) The Swiss-3D-image collection and PDB-browser on the world-wide web. Trends Biochem Soc20: 82–84

    Article  CAS  Google Scholar 

  • Rost B, Sander C (1996) Bridging the protein sequence-structure gap by structure predictions. Annu Rev Biophys Biomol Struct25: 113–136

    Article  PubMed  CAS  Google Scholar 

  • Ruediger N (1996) Bioinformatics: New frontier call young scientists. Science273: 265

    Article  PubMed  CAS  Google Scholar 

  • Russell VA, Evans CC, Li W, Ward MD (1997) two-dimensional hydrogen-bonded networks with adjustable porosity. Science 276: 575–579

    Article  PubMed  CAS  Google Scholar 

  • Sanchez R, Sali A (1997) Advances in comparative protein-structure modeling. Curr Opinion Struct Biol7: 206–214

    Article  CAS  Google Scholar 

  • Sadowski J (1997) A hybrid approach for addressing ring flexibility in 3D database searching. J Comput-Aided Mol Design11: 53–60

    Article  CAS  Google Scholar 

  • Schatz BR, Hardin JB (1994) NCSA Mosaic and the World Wide Web: Global hypermedia protocols for the Internet. Science265: 895–901

    Article  PubMed  CAS  Google Scholar 

  • Schatz BR (1997) Information retrieval in digital libraries: Bringing search to the net. Science275: 327–334

    Article  PubMed  CAS  Google Scholar 

  • Schuler GD, Epstein JA, Ohkawa H, Kans JA (1996) Entrez: molecular biology database and retrieval system. Methods Enzymol266: 141–162

    Article  PubMed  CAS  Google Scholar 

  • Sham HL, Zhao C, Stewart KD, Betebenner DA, Lin S, Park CH, Kong XP, Rosenbrook W Jr, Herrin T, Madigan D, Vasavanonda S, Lyons N, Molla A, Saldivar A, Marsh KC, McDonald E, Wideburg NE, Denissen JF, Robins T, Kempf DJ, Plattner JJ, Norbeck DW (1996) A novel, picomolar inhibitor of human immunodeficiency virus type 1 protease. J Med Chem39: 392–397

    Article  PubMed  CAS  Google Scholar 

  • Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins17: 355–362

    Article  PubMed  CAS  Google Scholar 

  • Sippl MJ (1995) Knowledge-based potentials for proteins. Curr Opinion Struct Biol 5: 229–235

    Article  CAS  Google Scholar 

  • Sippl MJ, Ortner M, Jaritz M, Lackner P, Flöckner H (1996) Helmholtz free energies of atom pair interactions in proteins. Fold Des1: 289–298

    Article  PubMed  CAS  Google Scholar 

  • Sponer J, Leszynski J, Hobza P (1996) Hydrogen bonding and stacking of DNA bases: A review of quantum-chemical ab initiostudies. J Biomol Struct Dyn14: 117–135

    Article  PubMed  CAS  Google Scholar 

  • St-Amant A (1996) Density functional methods in biomolecular modeling. In: Reviews in Computational Chemistry. (Lipkowitz, KB, Boyd, DB, eds) VCH Publishers, Inc., New York, Vol. 7: 217–259

    Chapter  Google Scholar 

  • Strynadka NCJ, Eisenstein M, Katchalski-Katzir E, Shoichet BK, Kuntz ID, Abagyan R, Totrov M, Janin J, Cherfils J, Zimmermann F, Olson A, Duncan B, Rao M, Jackson R, Sternberg M, James MNJ (1996) Molecular docking programs successfully predict the binding of a beta-lactamase inhibitory protein to TEM-1 beta-lactamase. Nature Struct Biol3: 233–239

    Article  PubMed  CAS  Google Scholar 

  • Stupp SI, LeBonheur V, Walker K, Li LS, Huggins KE, Keser M, Armstutz A (1997) Supramolecular materials: Self-organized nanostructures. Science276: 384–389

    Article  PubMed  CAS  Google Scholar 

  • Sühnel J (1996) Image library of biological macromolecules. Comput Appl Biosci12: 227–229

    PubMed  Google Scholar 

  • Sühnel J (1997) Views of RNA on the World- Wide Web. Trends Genetics13: 206–207

    Article  Google Scholar 

  • Thomas PD, Dill K (1996) Statistical potentials from protein structures: How accurate are they? J Mol Biol257: 457–469

    Article  PubMed  CAS  Google Scholar 

  • Torda AE (1997) Perspectives in protein-fold recognition. Curr Opinion Struct Biol7: 200–205

    Article  CAS  Google Scholar 

  • Uphoff KW, Bell SD, Ellington AD (1996) In vitroselection of aptamers: the dearth of pure reason. Curr Opinion Struct Biol6: 281–288

    CAS  Google Scholar 

  • Vajda S, Sippl M, Novotny J (1997) Empirical potentials and functions for protein folding and binding. Curr Opinion Struct Biol7: 222–228

    Article  CAS  Google Scholar 

  • Van Gunsteren WF, Mark AE (1992) On the interpretation of biochemical data by molecular dynamics computer simulation. Eur J Biochem204: 947–961

    Article  PubMed  Google Scholar 

  • Van Gunsteren WF, Billeter SR, Eising AA, Hünenberger PH, Krüger P, Mark AE, Scott WRP, Tironi IG (1996) Biomolecular simulation: The GROMOS 96 manual and users guide. vdf Hochschulverlag AG, ETH Zürich; BIOMOS b.v., Zürich, Groningen

    Google Scholar 

  • Verlinde CLJM, Hol WGJ (1994) Structure based drug design: progress, results and challenges. Structure2: 577–587

    Article  PubMed  CAS  Google Scholar 

  • Wahl MC, Sundaralingam M (1995) New crystal structures of nucleic acids and their complexes. Curr Opinion Struct Biol5: 282–295

    Article  CAS  Google Scholar 

  • Watson JD, Crick FCH (1953) A structure for deoxyribose nucleic acid. Nature171: 737

    Article  PubMed  CAS  Google Scholar 

  • Weber IT, Harrison RW (1996) Molecular mechanics calculations on HIV-1 protease with peptide substrates correlate with experimental data. Protein Eng6: 679–690

    Article  Google Scholar 

  • Wedel AB (1996) Fishing the best pool for novel ribozymes. Trends Biotechnol14: 459–465

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Kochoyan M, Burgstaller P, Westhof E, Famulok M (1996) Structural basis of ligand discrimination by two related aptamers resolved by NMR spectroscopy. Science272: 1343–1347

    Article  PubMed  CAS  Google Scholar 

  • Zerner MC (1991) Semiempirical molecular orbital methods. In: Reviews in Computational Chemistry (Lipkowitz, KB, Boyd, DB, eds) VCH Publishers, Inc., New York, Vol. II, 313–365

    Chapter  Google Scholar 

  • Zuker M, Jacobson AB (1995) Well-determined regions in RNA secondary structure prediction: analysis of small subunit ribosomal RNA. Nucleic Acids Res23: 2791–2798

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Sühnel, J. (1999). Computer modeling of protein, nucleic acid, and drug structures. In: Köhler, J.M., Mejevaia, T., Saluz, H.P. (eds) Microsystem Technology. BioMethods. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8817-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8817-2_20

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9784-6

  • Online ISBN: 978-3-0348-8817-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics