Skip to main content

Sensitivity Analysis and Real-Time Control of Nonlinear Optimal Control Systems via Nonlinear Programming Methods

  • Conference paper

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 124))

Abstract

Parametric nonlinear optimal control problems subject to control and state constraints are studied. Based on recent stability results we propose a robust nonlinear programming method to compute the sensitivity derivatives of optimal solutions. Realtime control approximations of perturbed optimal solutions are obtained by evaluating a first order Taylor expansion of the perturbed solution. The numerical methods are illustrated by two examples. We consider the Rayleigh problem from electrical engineering and the maximum range flight of a hang glider.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beltracchi, T. J.; Gabriele, G. A.: An investigation of using an RQP based method to calculate parameter sensitivity derivatives, in “Recent Advances in Multidisciplinary Analysis and Optimization”, NASA Conference Publication 3031, Part 2, Proceedings of a symposium held in Hampton, USA, September 28–30, 1988.

    Google Scholar 

  2. Beltracchi, T. J.; Nguyen, H. N.: Experience with post optimality parameter sensitivity analysis in FONSIZE, American Institute of Aeronautics and Astronautics, Report AIAA-92-4749-CP, pp. 496-506, 1992.

    Google Scholar 

  3. Betts, J. T.; Huffmann, W. P.: Path constrained trajectory optimization using sparse sequential quadratic programming, Applied Mathematics and Statistics Group, Boeing Computer Services, Seattle, USA, 1991.

    Google Scholar 

  4. Bock, H. G.; Krämer-Eis, P.: An efficient algorithm for approximate computation of feedback control laws in nonlinear processes, ZAMM, 61 (1981), T330–T332.

    MATH  Google Scholar 

  5. Büskens, C.: Direkte Optimierungsmethoden zur numerischen Berechnung optimaler Steuerungen, Diploma thesis, Institut für Numerische Mathematik, Universität Münster, Münster, Germany, 1993.

    Google Scholar 

  6. Dontchev, A. L.; Hager, W. W.: Lipschitz stability in nonlinear control and optimization, SIAM J. Control and Optimization, 31 (1993), pp. 569–603.

    Article  MathSciNet  MATH  Google Scholar 

  7. Dontchev, A. L.; Hager, W. W.; Poore, A. B.; and Yang, B.: Optimality, stability and convergence in nonlinear control, Applied Mathematics and Optimization, 31 (1995), pp. 297–326.

    Article  MathSciNet  MATH  Google Scholar 

  8. Evtushenko, Y. G.: Numerical Optimization Techniques, Translation Series in Mathematics and Engineering, Optimisation Software Inc., Publications Division, New York, 1985.

    Book  Google Scholar 

  9. Fiacco, A. V.: Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, Mathematics in Science and Engineering, Vol. 165, Academic Press, New York, 1983.

    Google Scholar 

  10. Hallmann, W.: Sensitivity analysis for trajectory optimization, 28th Aerospace Sciences Meeting, AIAA 90-0471, Reno, USA, January 8–11, 1990.

    Google Scholar 

  11. Hallmann, W.: Optimal scaling techniques for the nonlinear programming problem, 5th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Panama City Beach, USA, September 7–9, 1994.

    Google Scholar 

  12. Jacobson, D. H.; Mayne, D. Q.: Differential Dynamic Programming, American Elsevier Publishing Company Inc., New York 1970.

    MATH  Google Scholar 

  13. Krämer-Eis, P.: Ein Mehrzielverfahren zur numerischen Berechnung optimaler Feedback-Steuerung en bei beschränkten nichtlinearen Steuerungsproblemen, Bonner Mathematische Schriften, 164, 1985.

    Google Scholar 

  14. Malanowski, K.: Stability and sensitivity of solutions to nonlinear optimal control problems, Applied Mathematics and Optimization, 32 (1995), pp. 111–141.

    Article  MathSciNet  MATH  Google Scholar 

  15. Malanowski, K.; Maurer, H.: Sensitivity analysis for parametric control problems with control-state constraints, Computational Optimization and Applications, 5 (1996), pp. 253–283.

    Article  MathSciNet  MATH  Google Scholar 

  16. Malanowski, K.; Maurer, H.: Sensitivity analysis for state constrained control problems, Angewandte Mathematik und Informatik, Universität Münster, Preprint No. 21/96-N, 1996.

    Google Scholar 

  17. Maurer H.; Augustin, D.: Second order sufficient conditions and sensitivity analysis for the controlled Rayleigh problem, to appear in Proceedings of the 4th Conference on Parametric Optimization and Related Topics, Enschede, June 6–9, 1995.

    Google Scholar 

  18. Maurer, H.; Pesch, H. J.: Solution differentiability for parametric nonlinear control problems, SIAM Journal on Control and Optimization, 32 (1994), pp. 1542–1554.

    Article  MathSciNet  MATH  Google Scholar 

  19. Maurer, H.; Pesch, H. J.: Solution differentiability for parametric nonlinear control problems with control-state constraints, Control and Cybernetics, 23 (1994), pp. 201–227.

    MathSciNet  MATH  Google Scholar 

  20. Nerz, E.: Optimale Steuerung eines Hängegleiters, Munich University of Technology, Department of Mathematics, Diploma Thesis, 1990.

    Google Scholar 

  21. Pesch, H. J.: Real-time computation of feedback controls for constrained optimal control problems, Part 1: Neighbouring extremals, Optimal Control Applications & Methods, 10 (1989), pp. 129–145.

    Article  MathSciNet  MATH  Google Scholar 

  22. Pesch, H.J.: Real-time computation of feedback controls for constrained optimal control problems, Part 2: A correction method based on multiple shooting, Optimal Control Applications & Methods, 10 (1989), pp. 147–171.

    Article  MathSciNet  MATH  Google Scholar 

  23. vonStryk, O.: Numerische Lösung optimaler Steuerungsprobleme: Diskretisierung, Parameteroptimierung und Berechnung der adjungierten Variablen. Fortschritt-Berichte VDI, Reihe 8, Nr. 441, VDI Verlag, Germany (1995).

    Google Scholar 

  24. Teo, K. L.; Goh C. J.; Wong, K. H.: A Unified Computational Approach to Optimal Control Problems, Longman Scientific and Technical, New York, 1991.

    MATH  Google Scholar 

  25. Tun T.; Dillon, T. S.: Extensions of the differential dynamic programming method to include systems with state dependent control constraints and state variable inequality constraints, Journal of Applied Science and Engineering A, 3, (1978), pp. 171–192.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this paper

Cite this paper

Büskens, C., Maurer, H. (1998). Sensitivity Analysis and Real-Time Control of Nonlinear Optimal Control Systems via Nonlinear Programming Methods. In: Schmidt, W.H., Heier, K., Bittner, L., Bulirsch, R. (eds) Variational Calculus, Optimal Control and Applications. International Series of Numerical Mathematics, vol 124. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8802-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8802-8_19

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9780-8

  • Online ISBN: 978-3-0348-8802-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics