Skip to main content

Regional Correlation Analysis between Seismic Heterogeneity in the Lower Mantle and Subduction in the Last 180 Myr: Implications for Mantle Dynamics and Rheology

  • Conference paper
  • 377 Accesses

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

We have carried out a regional correlation analysis between the seismic structure of the lower mantle and the reconstructions of subduction sites in the past 180 Myr with the aim of estimating individual styles of slab motion over different parts of the earth. The correlation patterns obtained for three subduction branches (West Pacific, East Pacific and Alpine-Himalayan) are remarkably different. In the West Pacific, the subducting slabs tend to be stagnant beneath the 660-km discontinuity, while basically no subducted lithosphere has been detected below the depth of 1000 km. In contrast, the lithosphere subducted beneath the Americas seems to penetrate through the lower mantle continuously, showing correlation peaks at depth intervals of 800–1100 km and 1900–2500 km. In the Alpine-Himalayan region, significant correlation has been found below the 660-km discontinuity for recent subduction and in the mid-mantle for subduction younger than 120 Myr. An increase in the correlation close to the core-mantle boundary nevertheless indicates that, under certain circumstances, the slabs can reach the bottom of the mantle in the West Pacific and in the Alpine-Himalayan regions as well. The correlation peak at a depth of around 1000 km is common to all the subduction branches. However, its depth rather varies for different subduction zones and, thus, it is not clear whether this correlation maximum may be associated with a global mid-mantle discontinuity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Čadek, O., Yuen, D. A., Čížková, H., Kido, M., Zhou, H., Brunet, D., and Machetel, Ph. (1997), New Perspectives on Mantle Dynamics from High-resolution Seismic Tomographic Model P1200, Pure appl, geophys. 151, 503–525.

    Google Scholar 

  • Čadek, O., Yuen, D. A., Steinbach, V., Chopelas, A., and Matyska, C. (1994), Lower Mantle Thermal Structure Deduced from Seismic Tomography, Mineral Physics, and Numerical Modelling, Earth Planet. Sci. Lett. 121, 385–402.

    Article  Google Scholar 

  • Christensen, U. R. (1996), The Influence of Trench Migration on Slab Penetration into the Lower Mantle, Earth Planet. Sci. Lett. 140, 27–39.

    Article  Google Scholar 

  • Čížková, H., Čadek, O., Yuen, D. A., and Zhou, H. (1996), Slope of the Geoid Spectrum and Constraints on Mantle Viscosity Stratification, Geophys. Res. Lett. 23, 3063–3066.

    Article  Google Scholar 

  • Cserepes, L., and Yuen, D. A. (1997), Dynamical Consequences of Mid-mantle Viscosity Stratification on Mantle Flows with an Endothermic Phase Transition, Geophys. Res. Lett. 24, 181–184.

    Article  Google Scholar 

  • Dziewonski, A. M., and Anderson, D. L. (1981), Preliminary Reference Earth Model (PREM), Phys. Earth Planet. Int. 25, 297–356.

    Article  Google Scholar 

  • Forte, A. M., and Mitrovica, X. J. (1996), New Inferences of Mantle Viscosity from Joint Inversion of Long-wavelength Mantle Convection and Postglacial Rebound Data, Geophys. Res. Lett. 23, 1147–1150.

    Article  Google Scholar 

  • Forte, A. M., and Peltier, W. R. (1991), Viscous Flow Models of Global Geophysical Observables, 1. Forward Problems, J. Geophys. Res. 96, 20131–20159.

    Article  Google Scholar 

  • Gordon, R. G., and Jurdy, D. M. (1986), Cenozoic Plate Motion, J. Geophys. Res. 91, 1049–1057.

    Google Scholar 

  • Grand, S. P. (1994), Mantle Shear Structure Beneath the Americas and Surrounding Oceans, J. Geophys. Res. 99, 11591–11621.

    Article  Google Scholar 

  • Honda, S., Yuen, D. A., Balachandar, S., and Reuteler, D. (1993), Three-dimensional Instabilities of Mantle Convection with Multiple Phase Transitions, Science 259, 1308–1311.

    Article  Google Scholar 

  • Inoue, H., Fukao, Y., Tanabe, K., and Ogata, Y. (1990), Whole Mantle P-wave Travel-time Tomography, Phys. Earth Planet. Int. 59, 294–328.

    Article  Google Scholar 

  • Kawakatsu, H., and Niu, F. (1994), Seismic Evidence of a 920-km Discontinuity in the Mantle, Nature 371, 301–305.

    Article  Google Scholar 

  • Kawakatsu, H., and Niu, F. (1996), Depth Variations of the “920-km Discontinuity” in the Midmantle, Annales Geophysicae 14, C43.

    Google Scholar 

  • Kendall, J. M., and Silver, P. G. (1996), Constraints from Seismic Anisotropy on the Nature of the Lowermost Mantle, Nature 381, 409–412.

    Article  Google Scholar 

  • Kývalová, H., Čadek, O., and Yuen, D. A. (1995), Correlation Analysis between Subduction in the Last 180 Myr and Lateral Seismic Structure in the Lower Mantle, Geophys. Res. Lett. 22, 1281–1284.

    Article  Google Scholar 

  • Machetel, P., and Weber, P. (1991), Intermittent Layered Convection in a Model Mantel with an Endothermic Phase Change at 670 km, Nature 350, 55–57.

    Article  Google Scholar 

  • Masters, G., Bolton, H., and Shearer, P. (1992), Large-scale 3-dimensional Structure of the Mantle, E.O.S., American Geophys. Union Trans. 73 (14), 201.

    Google Scholar 

  • Pari, G., and Peltier, W. R. (1995), The Heat Flow Constraint on Mantle Tomography-based Convection Models: Towards a Geo dynamically Self-consistent Inference of Mantle Viscosity, J. Geophys. Res. 100, 12731–12752.

    Article  Google Scholar 

  • Peltier, W. R., and Solheim, L. P. (1992), Mantle Phase Transitions and Layered Chaotic Convection, Geophys. Res. Lett. 19, 321–324.

    Article  Google Scholar 

  • Ray, T. W., and Anderson, D. L. (1994), Spherical Disharmonics in the Earth Sciences and the Spatial Solution: Ridges, Hotspots, Slabs, Chemistry, and Tomography Correlations, J. Geophys. Res. 99, 9605–9614.

    Article  Google Scholar 

  • Ricard, Y., Richards, M., Lithgow-Bertelloni, C., and Le Stunff, Y. (1993), A Geodynamic Model of Mantle Density Heterogeneity, J. Geophys. Res. 98, 21895–21909.

    Article  Google Scholar 

  • Richards, M. A., and Engebretson, D. C. (1992), Large-scale Mantle Convection and the History of Subduction, Nature 355, 437–440.

    Article  Google Scholar 

  • Riedel, M. R., and Karato, S. (1997), Grain-size Evolution in Subducted Lithosphere Associated with the Olivine-spinel Transformation and its Effect on Rheology, Earth Planet. Sci. Lett., in press.

    Google Scholar 

  • Sakurai, T., Whole Mantle P-wave Tomography and Differential PP-P Time Measurement, Master Thesis (University of Tokyo, 1996).

    Google Scholar 

  • Scrivner, C., and Anderson, D. L. (1992), The Effect of Post Pangia Introduction on Global Mantle Tomography and Convection, Geophys. Res. Lett. 19, 1053–1056.

    Article  Google Scholar 

  • Steinbach, V., and Yuen, D. A. (1992), The Effects of Multiple Phase Transitions on Venusian Mantle Convection, Geophys. Res. Lett. 19, 2243–2246.

    Article  Google Scholar 

  • Su, W.-J., Woodward, R. L., and Dziewonski, A. M. (1994), Degree 12 Model of Shear Velocity Heterogeneity in the Mantle, J. Geophys. Res. 99, 6945–6980.

    Article  Google Scholar 

  • Tackley, P. J., Stevenson, D. J., Glatzmaier, G. A., and Schubert, G. (1993), Effects of an Endothermic Phase Transition at 670 km Depth on Spherical Mantle Convection, Nature 361, 699–704.

    Article  Google Scholar 

  • Tanimoto, T. (1990), Long Wavelength S-wave Velocity Structure Throughout the Mantle, Geophys. J. Int. 100, 327–336.

    Article  Google Scholar 

  • van der Hilst, R. D., Widiyantoro, S., and Engdahl, E. R. (1997), Evidence for Deep Mantle Circulation from Global Tomography, Nature 386, 578–584.

    Article  Google Scholar 

  • Vasco, D. W., Johnson, L. R., Pulliam, R. J., and Earle, P. S. (1993), Robust Inversion of IASP91 Travel-time Residuals for Mantle P- and S-velocity Structure, Earthquake Mislocation, and Station Correction, J. Geophys. Res. 99, 13727–13755.

    Article  Google Scholar 

  • Weinstein, S. A. (1993), Catastrophic Overturn in the Earth’s Mantle Driven by Multiple Phase Changes and Internal Heat Generation, Geophys. Res. Lett. 20, 101–104.

    Article  Google Scholar 

  • Wen, L., and Anderson, D. L. (1995), The Fate of Slabs Inferred from 130 Million Years of Subduction and Seismic Tomography, Earth Planet. Sci. Lett. 133, 185–198.

    Article  Google Scholar 

  • Wysession, M. E. (1996), Large-scale Structure of the Core-mantle Boundary from Diffracted Waves, Nature 382, 244–248.

    Article  Google Scholar 

  • Zhou, H. (1996), A High Resolution P-wave Model for the Top 1200 km of the Mantle, J. Res. 101, 27791–27810.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this paper

Cite this paper

Čížková, H., Čadek, O., Slancová, A. (1998). Regional Correlation Analysis between Seismic Heterogeneity in the Lower Mantle and Subduction in the Last 180 Myr: Implications for Mantle Dynamics and Rheology. In: Plomerová, J., Liebermann, R.C., Babuška, V. (eds) Geodynamics of Lithosphere & Earth’s Mantle. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8777-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8777-9_16

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9770-9

  • Online ISBN: 978-3-0348-8777-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics