Skip to main content

Differential Invariants of Embeddings of Manifolds in Complex Spaces

  • Chapter
Singularities

Part of the book series: Progress in Mathematics ((PM,volume 162))

  • 795 Accesses

Abstract

Let V be a reduced complex space, W a complex submanifold, and let (V′, W′) be another such pair. Let f : VV′ be a homeomorphism with f(W)W′, such that f and f −1 are both continuously (real-) differentiable. Then f induces a component — (with multiplicity) — preserving homeomorphism f0 from the normal cone C(V, W) to C(V′, W′), respecting the natural ℝ* actions on these cones. Moreover, though f0 need not respect the ℂ* actions nevertheless the induced map on Borel-Moore homology f* : H*(W) → H*(W′) takes the Segre classes of the components of C(V,W) to ±those of the corresponding components of C(V′,W). In particular we recover the differential invariance of the multiplicity of W in V.

Partially supported by the National Security Agency

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Bingener; H. Flenner: On the fibers of analytic mappings. In: Complex Analysis and Geometry, p. 45–101 Univ. Ser. Math. Plenum, New York, 1993.

    Google Scholar 

  2. A. Borel, A. Haefliger: La classe d’homologie fondamentale d’un espace analytique. Bull. Soc. math. France 89, 461–513, (1961).

    MathSciNet  MATH  Google Scholar 

  3. G. Fischer: Complex Analytic Geometry. Lecture Notes in Math. 538, Springer Verlag, New York, 1976.

    MATH  Google Scholar 

  4. W. Fulton: Intersection Theory. Springer Verlag, New York, 1984.

    MATH  Google Scholar 

  5. A. Grothendieck, J. Dieudonné: Éléments de Géométrie Algébrique II. Publ. Math. Inst. Hautes Études Scientifiques 8, (1961).

    Google Scholar 

  6. Y.-N Gau, J. Lipman: Differential invariance of multiplicity on analytic varieties. Invent, math. 73, 165–188, (1984).

    Article  MathSciNet  Google Scholar 

  7. H. Hironaka: Normal cones in analytic Whitney stratifications. Publ. Math. Inst. Hautes Études Scientifiques, 36, 127–138, (1969).

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Hironaka: Introduction to the Theory of Infinitely Near Singular Points. Instituto “Jorge Juan” de Matematica, Madrid, 1974. (Memorias de Matematica del Instituto “Jorge Juan,” 28)

    Google Scholar 

  9. C. Houzel: Géométrie analytique locale. In: Familles d’Espaces Complexes et Fondements de la Géométrie Analytique. (Séminaire Henri Cartan, 1960/61, fascicule 2.) Institut Henri Poincaré, Paris, 1962.

    Google Scholar 

  10. F. Hirzebruch: Topological Methods in Algebraic Geometry. (Third enlarged edition) Springer Verlag, New York, 1966.

    Book  MATH  Google Scholar 

  11. J. Lipman: Equimultiplicity, reduction, and blowing up. In: Commutative Algebra, 111–147. Lecture Notes Pure ApplMath. 68, (Editor RDraper); Marcel Dekker, New York, 1982.

    Google Scholar 

  12. D. T. Lê, B. Teissier: Limites d’espaces tangents en géométrie analytique. Comment. Math. Helvetici, 63, 540–578, (1988).

    Article  MATH  Google Scholar 

  13. M. Lejeune, B. Teissier: Contributions à l’Étude des Singularités. Thèse d’État, Centre de Mathématiques, École Polytechnique, Paris, (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this chapter

Cite this chapter

Huang, W., Lipman, J. (1998). Differential Invariants of Embeddings of Manifolds in Complex Spaces. In: Arnold, V.I., Greuel, GM., Steenbrink, J.H.M. (eds) Singularities. Progress in Mathematics, vol 162. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8770-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8770-0_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9767-9

  • Online ISBN: 978-3-0348-8770-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics