Skip to main content

On Kleinian Singularities and Quivers

  • Chapter
Singularities

Part of the book series: Progress in Mathematics ((PM,volume 162))

Abstract

Starting from McKay’s observation on the description of (an essential part of) the representation theory of binary polyhedral groups Γ in terms of extended Coxeter-Dynkin-Witt diagrams \(\tilde \Delta (\Gamma )\) and working in the differential geometric framework of Hyper-Kähler-quotients P.B. Kronheimer was able to give a new construction of the semiuniversal deformations of the Kleinian singularities X = ℂ2/Γ as well as of their simultaneous resolutions ([24], [25], [26]). As far as the deformations were concerned, he already gave a purely algebraic geometric formulation of his results in terms of representations of certain quivers naturally attached to the diagrams \(\tilde \Delta (\Gamma )\). By making use of the invariant-theoretic notion of “linear modification” (cf. Section 6, below) and applying it to Kronheimer’s quiver construction we show here how to obtain a purely algebraic geometric simultaneous resolution as well (Section 7). On the way, we shall take the opportunity to remind the reader of various facts about

  • Kleinian singularities (Section 1),

  • McKay’s observation (Section 2),

  • Symplectic geometry (Section 3),

  • Kronheimer’s work (Section 4), and

  • Quivers (Section 5).

This article covers the main results of the doctoral dissertation [9] written at Hamburg university under the guidance of the second named author and supported by a DFG-grant (Ri 303/3-2). More details and worded out examples may be found there.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, R., Marsden, J.: Foundations of Mechanics. Benjamin/Cummings, Menlo Park, 1978.

    MATH  Google Scholar 

  2. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Graduate Texts in Math. 60, Springer Verlag, 1978.

    Google Scholar 

  3. Artin, M., Verdier, J.L.: Reflexive modules over rational double points. Math. Ann. 270, 79–82 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourbaki, N.: Groupes et algèbres de Lie, Chap. IV–VI. Hermann, Paris, 1968.

    Google Scholar 

  5. Brieskorn, E.: Über die Auflösung gewisser Singularitäten von holomorphen Abbildungen. Math. Annalen 166 (1966), 76–102.

    Article  MathSciNet  MATH  Google Scholar 

  6. Brieskorn, E.: Die Auflösung der rationalen Singularitäten holomorpher Abbildungen. Math. Annalen 178 (1968), 255–270.

    Article  MathSciNet  MATH  Google Scholar 

  7. Brieskorn, E.: Singular elements of semisimple algebraic groups. Actes Congr. Int. Math. Nice 1970, t.2, 279–284.

    MathSciNet  Google Scholar 

  8. Brion, M., Procesi, C.: Action d’un tore dans une variété projective. Progress in Math. 92(1990), 509–539.

    MathSciNet  Google Scholar 

  9. Cassens, H.: Lineare Modifikationen algebraischer Quotienten, Darstellungen des McKay-Köchers und Kleinsche Singularitäten. Dissertation, Fachbereich Mathematik, Universität Hamburg, June 1994.

    Google Scholar 

  10. Dolgachev, I., Hu, Y.: Variation of geometric invariant theory quotients. preprint, University of Michigan, Ann Arbor, 1993.

    Google Scholar 

  11. Duval, P.: On isolated singularities which do not affect the conditions of adjunction I, II, III. Proc. Cambridge Phil. Soc. 30, 453–459, 483–491 (1934).

    Article  Google Scholar 

  12. Esnault, H., Knörrer, H.: Reflexive modules over rational double points. Math. Ann. 272, 545–548 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  13. Esnault, H.: Reflexive modules on quotient singularities. J. Reine Angew. Math. 362, 63–71 (1985).

    MathSciNet  MATH  Google Scholar 

  14. Ford, D., McKay, J.: Representations and Coxeter graphs, in “The Geometric Vein” ( The Coxeter-Festschrift ), Ed. Ch. Davis, B. Grünbaum, F.A. Sherk, Springer Verlag, 1981, pp. 549–554.

    Google Scholar 

  15. Gabriel, P.: Unzerlegbare Darstellungen I. Manuscripta Math. 6(1972), 71–103.

    Article  MathSciNet  MATH  Google Scholar 

  16. Gonzales-Sprinberg, G., Verdier, J.L.: Construction géometrique de la correspondance de McKay. Ann. Sci E.N.S. 16, 409–449 (1983).

    Google Scholar 

  17. Guillemin, V., Sternberg, S.: Symplectic techniques in physics. Cambridge University Press, 1984.

    Google Scholar 

  18. Hartshorne, R.: Algebraic Geometry. Springer Graduate Text 52, Springer Verlag, Berlin Heidelberg New York, 1977.

    MATH  Google Scholar 

  19. Kac, V.G.: Infinite dimensional Lie algebras. 3rd ed., Cambridge University Press, 1990.

    Google Scholar 

  20. Kas, A.: On the resolution of certain holomorphic mappings. in “Global Analysis, Papers in honour of K. Kodaira”, Ed.P.C. Spencer, S. Iyanaga, Princeton Univ. Press, Princeton, 1969, 289–294.

    Google Scholar 

  21. King, A.D.: Moduli of representations of finite dimensional algebras. Quarterly Journal of Math. Oxford (2) 45 (1994), 515–530.

    Article  MATH  Google Scholar 

  22. Klein, F.: Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade. Teubner, Leipzig, 1884, and Birkhäuser, Basel, 1993. English translation: Lectures on the icosahedron and the solution of equations of the fifth degree. Trübner and Co., London, 1888, 1913, Dover, New York, 1956.

    Google Scholar 

  23. Knörrer, H. Group representations and the resolution of rational double points. Contemporary Mathematics (AMS) Vol. 45 (1985) 175–222.

    Article  Google Scholar 

  24. Kronheimer P.B.: Instantons gravitationnels et singularités de Klein. C. R. Acad. Sci. Paris, 303 Série I (1986), 53–55.

    MathSciNet  MATH  Google Scholar 

  25. Kronheimer P.B.: Oxford Ph. D. Thesis, 1987.

    Google Scholar 

  26. Kronheimer P.B.: The construction of ALE spaces as hyper-Kähler quotients. Journ. of Diff. Geometry 29(1989), 665–683.

    MathSciNet  MATH  Google Scholar 

  27. Luna, D.: Slices étales. Bull. Soc. Math. France, Mémoire 33 (1973), 81–105.

    MATH  Google Scholar 

  28. Lusztig, G.: Canonical bases arising from quantized enveloping algebras II. Progr. Theor. Phys. 102 (1990).

    Google Scholar 

  29. Lusztig, G.: Quivers, perverse sheaves, and quantized enveloping algebras. J. AMS 4(2), 1991, 365–42.

    MathSciNet  MATH  Google Scholar 

  30. Lusztig, G.: Affine Quivers and Canonical Bases. Publ. Math IHES 76 (1992), 111–163.

    MathSciNet  MATH  Google Scholar 

  31. McKay, J.: Graphs, singularities, and finite groups. Proc. Symp. Pure Math. Vol. 37, 183–186 (1980).

    MathSciNet  Google Scholar 

  32. Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory. 3rd ed., Springer Verlag, 1994.

    Google Scholar 

  33. Newstead, P.: Introduction to moduli problems and orbit spaces. TIFR Lecture Notes, Springer Verlag, 1978.

    Google Scholar 

  34. Reid, M.: What is a flip ? Preprint Warwick University, 1993.

    Google Scholar 

  35. Sardo-Infirri, A.V.: Resolutions of Orbifold Singularities and Representation Moduli of McKay Quivers. Ph.D. dissertation, Oxford University, 1994, also: preprint No. 984, RIMS, Kyoto-University, 1994.

    Google Scholar 

  36. Slodowy, P.: Simple singularities and simple algebraic groups. Springer Lecture Notes in Math. 815, 1980.

    Google Scholar 

  37. Slodowy, P.: Platonic solids, Kleinian singularities, and Lie groups. in “Algebraic Geometry”, Proa, Ann Arbor 1981, Ed. I. Dolgachev, Springer Lecture Notes in Math. 1008, 102–138(1983).

    Google Scholar 

  38. Thaddeus, M.: Geometric invariant theory and flips. preprint, Oxford University, 1994, alg-geom 9405004

    Google Scholar 

  39. Tjurina, G.N.: Resolutions of flat deformations of rational double points. Functional Anal. Appl. 4,(1), 68–73(1970).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this chapter

Cite this chapter

Cassens, H., Slodowy, P. (1998). On Kleinian Singularities and Quivers. In: Arnold, V.I., Greuel, GM., Steenbrink, J.H.M. (eds) Singularities. Progress in Mathematics, vol 162. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8770-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8770-0_14

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9767-9

  • Online ISBN: 978-3-0348-8770-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics