Skip to main content

Keratinocytes as a cellular source of inflammatory eicosanoids

  • Chapter
Book cover Fatty Acids and Inflammatory Skin Diseases

Part of the book series: Progress in Inflammation Research ((PIR))

  • 155 Accesses

Abstract

The term ‘eicosanoid’ was introduced by Corey et al. [1] and comprises a large and complex family of compounds derived from 20-carbon polyunsaturated fatty acids, among which arachidonic acid is the most biologically relevant. This group of substances includes prostaglandins, thromboxanes, leukotrienes, hydroperoxy- and hydroxyeicosatetraenoic acids (HPETEs and HETEs), hepoxilins, lipoxins, triox-ilins, nonleukotriene dihydroxyeicosatetraenoic acids (DiHETEs) and isoprostanes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Corey EJ, Albright JO, Barton AE, Hashimoto S (1980) Chemical and enzymatic synthesis of 5-HPETE, a key biological precursor of slow-reacting substance of anaphylax-is (SRS) and 5-HETE. J Am Chem Soc 102: 1435–1436

    Article  CAS  Google Scholar 

  2. Yamamoto S (1992) Mammalian lipoxygenases: molecular structures and functions. Biochim Biophys Acta 1128: 117–131

    Article  PubMed  CAS  Google Scholar 

  3. Pace-Asciak CR, Asotra S (1989) Biosynthesis, catabolism and biological properties of HPETEs, hydroperoxide derivatives of arachidonic acid. Free Radic Biol Med 7: 409–433

    Article  PubMed  CAS  Google Scholar 

  4. Porter NA (1980) Prostaglandin endoperoxides. In: WA Pryor (ed): Free radicals in biology, vol 4. Academic Press, London, 261–294

    Google Scholar 

  5. Serhan CN, Romano M (1995) Lipoxin biosynthesis and actions: role of the human platelet LX-synthase. J Lipid Mediat Cell Signal 12: 293–306

    Article  PubMed  CAS  Google Scholar 

  6. Pace-Asciak CR, Reynaud D, Demin PM (1995) Hepoxilins: a review on their enzymatic formation, metabolism and chemical synthesis. Lipids 30: 107–114

    Article  PubMed  CAS  Google Scholar 

  7. Musser JH, Kreft AF (1992) 5-Lipoxygenase: properties, pharmacology and the quino-linyl(bridged)aryl class of inhibitors. J Med Chem 35: 2501–2524

    Article  PubMed  CAS  Google Scholar 

  8. Ford-Hutchinson AW, Gresser M, Young RN (1994) 5-Lipoxygenase. Annu Rev Biochem 63: 383–417

    Article  PubMed  CAS  Google Scholar 

  9. Denzlinger C (1996) Biology and pathophysiology of leukotrienes. Crit Rev Oncol Hematol 23: 167–223

    Article  PubMed  CAS  Google Scholar 

  10. Hill E, Maclouf J, Murphy RC, Henson PM (1992) Reversible membrane association of neutrophil 5-lipoxygenase is accompanied by retention of activity and a change in substrate specificity. J Biol Chem 207: 22048–22053

    Google Scholar 

  11. Claesson H-E, HaeggstrÖm JZ, Odlander B, Medina JF, Wetterholm A, Jakobsson P-J, Radmark O (1991) The role of leukotriene A4 hydrolase in cells and tissues lacking 5-lipoxygenase. Adv Exp Med Biol 314: 307–315

    Article  PubMed  CAS  Google Scholar 

  12. Lam BK, Penrose JF, Xu K, Austen KF (1995) Leukotriene C4 synthase. J Lipid Mediat Cell Signal 12: 333–341

    Article  PubMed  CAS  Google Scholar 

  13. Brain SD, Camp RDR, Dowd PM, Black KA, Woollard PM, Mallet AI, Greaves MW (1982) Psoriasis and leukotriene B4. Lancet 2: 762–763

    Article  PubMed  CAS  Google Scholar 

  14. Brain S, Camp R, Dowd P, Black KA, Greaves M (1984) The release of leukotriene B4-like material in biologically active amounts from the lesional skin of patients with psoriasis. J Invest Dermatol 83: 70–73

    Article  PubMed  CAS  Google Scholar 

  15. Brain SD, Camp RDR, Cunningham FM, Dowd PM, Greaves MW, Black KA (1984) Leukotriene B4-like material in scale of psoriatic lesions. Br J Pharmacol 83: 313–317

    Article  PubMed  CAS  Google Scholar 

  16. Ruzicka T, Simmet T, Peskar BA, Ring J (1986) Skin levels of arachidonic acid-derived inflammatory mediators and histamine in atopic dermatitis and psoriasis. J Invest Dermatol 86: 105–108

    Article  PubMed  CAS  Google Scholar 

  17. Grabbe J, Rosenbach T, Czarnetzki BM (1985) Production of LTB4-like chemotactic arachidonate metabolites from human keratinocytes. J Invest Dermatol 85: 527–530

    Article  PubMed  CAS  Google Scholar 

  18. Solá J, Godessart N, Vila L, Puig L, De Moragas JM (1992) Epidermal cell-polymor-phonuclear leukocyte cooperation in the formation of leukotriene B4 by transcellular biosynthesis. J Invest Dermatol 98: 333–339

    Article  PubMed  Google Scholar 

  19. Iversen L, Fogh K, Ziboh VA, Kristensen P, Schmedes A, Kragballe K (1993) Leukotriene B4 formation during human neutrophil keratinocyte interactions: evidence for transformation of leukotriene A4 by putative keratinocyte leukotriene A4 hydrolase. J Invest Dermatol 100: 293–298

    Article  PubMed  CAS  Google Scholar 

  20. Breton J, Woolf D, Young P, Chabot-Fletcher M (1996) Human keratinocytes lack the components to produce leukotriene B4. J Invest Dermatol 106: 162–167

    Article  PubMed  CAS  Google Scholar 

  21. Ford-Hutchinson AW (1991) FLAP: a novel drug target for inhibiting the synthesis of leukotrienes. Trends Pharmacol Sci 12: 68–70

    Article  PubMed  CAS  Google Scholar 

  22. Ziboh VA, Wong T, Wu MC, Yunis AA (1986) Lipoxygenation of arachidonic acid by differentiated and undifferentiated human promyelocytic HL-60 cells. J Lab Clin Med 108: 161–166

    PubMed  CAS  Google Scholar 

  23. Goerig M, Habenicht AJR, Zeh W, Salbach P, Kommerell B, Rothe DER, Nastainczyk W, Glomset JA (1988) Evidence for coordinate, selective regulation of eicosanoid synthesis in platelet-derived growth factor-stimulated 3T3 fibroblasts and in HL-60 cells induced to differentiate into macrophages or neutrophils. J Biol Chem 263: 19384–19391

    PubMed  CAS  Google Scholar 

  24. Kargman S, Rouzer CA (1989) Studies on the regulation, biosynthesis and activation of 5-lipoxygenase in differentiated HL60 cells. J Biol Chem 264: 13313–13320

    PubMed  CAS  Google Scholar 

  25. Bennett CF, Chiang MY, Monia BP, Crooke ST (1993) Regulation of 5-lipoxygenase and 5-lipoxygenase-activating protein expression in HL-60 cells. Biochem J 289: 33–39

    PubMed  CAS  Google Scholar 

  26. Reid GK, Kargman S, Vickers PJ, Mancini JA, Leveille C, Ethier D, Miller DK, Gillard JW, Dixon RAF, Evans JF (1990) Correlation between expression of 5-lipoxy-genase-activating protein, 5-lipoxygenase and cellular leukotriene synthesis. J Biol Chem 265: 19818–19823

    PubMed  CAS  Google Scholar 

  27. Janssen-Timmen U, Vickers PJ, Wittig U, Lehmann WD, Stark H-J, Fusenig NE, Rosen-bach T, Radmark O, Samuelsson B, Habenicht AJR (1995) Expression of 5-lipoxygenase in differentiating human skin keratinocytes. Proc Natl Acad Sci USA 92: 6966–6970

    Article  PubMed  CAS  Google Scholar 

  28. Sala A, Testa T, Folco G (1996) Leukotriene A4, and not leukotriene B4, is the main 5-lipoxygenase metabolite released by bovine leukocytes. FEBS Lett 388: 94–98

    Article  PubMed  CAS  Google Scholar 

  29. Sala A, Bolla M, Zarini S, Müller-Peddinghaus R, Folco G (1996) Release of leukotriene A4 versus B4 from human polymorphonuclear leukocytes. J Biol Chem 271: 17944–17948

    Article  PubMed  CAS  Google Scholar 

  30. Lindgren JA, Edenius C (1993) Transcellular biosynthesis of leukotrienes and lipoxins via leukotriene A4 transfer. Trends Pharmacol Sci 14: 351–354

    Article  PubMed  CAS  Google Scholar 

  31. Marcus AJ, Hajjar DP (1993) Vascular transcellular signalling. J Lipid Res 34: 2017–2031

    PubMed  CAS  Google Scholar 

  32. Brady HR, Papayianni A, Serhan CN (1994) Leukocyte adhesion promotes biosynthesis of lipoxygenase products by transcellular routes. Kidney Int 45: S90–S97

    Article  CAS  Google Scholar 

  33. Odlander B, Jakobsson PJ, Medina JF, Radmark O, Yamaoka KA, Rosen A, Claesson HE (1989) Formation and effects of leukotriene B4 in human lymphocytes. Int J Tissue React 11: 277–289

    PubMed  CAS  Google Scholar 

  34. Jakobsson PJ, Odlander B, Claesson HE (1991) Effects of monocyte-lymphocyte interactions on the synthesis of leukotriene B4. Eur J Biochem 196: 395–400

    Article  PubMed  CAS  Google Scholar 

  35. Maugeri N, Evangelista V, Celardo A, Dell’Elba G, Martelli N, Piccardoni P, De Gae-tano G, Cerletti C (1994) Polymorphonuclear leukocyte-platelet interaction: role of P-selectin in thromboxane and leukotriene C4 cooperative synthesis. Thromb Haemost 72: 450–456

    PubMed  CAS  Google Scholar 

  36. Feinmark SJ, Cannon PJ (1987) Vascular smooth muscle cell leukotriene C4 synthesis: requirement for transcellular leukotriene A4 metabolism. Biochim Biophys Acta 922: 125–135

    Article  PubMed  CAS  Google Scholar 

  37. Fukai F, Suzuki Y, Ohtaki H, Katayama T (1993) Rat hepatocytes generate peptide leukotrienes from leukotriene A4. Arch Biochem Biophys 305: 378–384

    Article  PubMed  CAS  Google Scholar 

  38. Radmark O, Shimizu T, JÖrnvall H, Samuelsson B (1984) Leukotriene A4 hydrolase in human leukocytes. Purification and properties. J Biol Chem 259: 12339–12345

    PubMed  CAS  Google Scholar 

  39. Maycock AL, Anderson MS, DeSousa DM, Kuehl FA Jr (1982) Leukotriene A4: preparation and enzymatic conversion in a cell-free system to leukotriene B4. J Biol Chem 257: 13911–13914

    PubMed  CAS  Google Scholar 

  40. Jakschik BA, Kuo CG (1983) Characterization of leukotriene A4 and B4 biosynthesis. Prostaglandins 25: 767–782

    Article  PubMed  CAS  Google Scholar 

  41. Iversen L, Ziboh VA, Shimizu T, Ohishi N, Radmark O, Wetterholm A, Kragballe K (1994) Identification and subcellular localization of leukotriene A4-hydrolase activity in human epidermis. J Dermatol Sci 7: 191–201

    Article  PubMed  CAS  Google Scholar 

  42. Ikai K, Okano H, Horiguchi Y, Sakamoto Y (1994) Leukotriene A4 hydrolase in human skin. J Invest Dermatol 102: 253–257

    Article  PubMed  CAS  Google Scholar 

  43. Iversen L, Kristensen P, Nissen JB, Merrick WC, Kragballe K (1955) Purification and characterization of leukotriene A4 hydrolase from human epidermis. FEBS Lett 358: 316–322

    Article  Google Scholar 

  44. Agarwal R, Raza H, Allyn DL, Bickers DR, Mukhtar H (1992) Glutathione-S-trans-ferase-dependent conjugation of leukotriene A4-methyl ester to leukotriene C4-methyl ester in mammalian skin. Biochem Pharmacol 44: 2047–2053

    Article  PubMed  CAS  Google Scholar 

  45. Iversen L, Kristensen P, Gron B, Ziboh VA, Kragballe K (1994) Human epidermis transforms exogenous leukotriene A4 into peptide leukotrienes: possible role in transcellular metabolism. Arch Dermatol Res 286: 261–265

    Article  PubMed  CAS  Google Scholar 

  46. Keppler D (1992) Leukotrienes: biosynthesis, transport, inactivation and analysis. Rev Physiol Biochem Pharmacol 121: 1–30

    Article  PubMed  CAS  Google Scholar 

  47. KÖnig W, SchÖnfeld W, Raulf M, KÖller J, Scheffer J, Brom J (1990) The neutrophil and leukotrienes — role in health and disease. Eicosanoids 3: 1–22

    PubMed  Google Scholar 

  48. Powell WS (1984) Properties of leukotriene B4 20-hydroxylase from polymorphonuclear leukocytes. J Biol Chem 259: 3082–3089

    PubMed  CAS  Google Scholar 

  49. Soberman RJ, Harper TW, Murphy RC, Austen KF (1985) Identification and functional characterization of leukotriene B4 20-hydroxylase of human polymorphonuclear leukocytes. Proc Natl Acad Sci USA 82: 2292–2295

    Article  PubMed  CAS  Google Scholar 

  50. Kikuta Y, Kusunose E, Kondo T, Yamamoto S, Kinoshita H, Kusunose M (1994) Cloning and expression of a novel form of leukotriene B4 ω-hydroxylase from human liver. FEBS Lett 348: 70–74

    Article  PubMed  CAS  Google Scholar 

  51. Jedlitschky G, Huber M, VÖlkl A, Muller M, Leier I, Müller J, Lehmann WD, Fahimi HD, Keppler D (1991) Peroxisomal degradation of leukotrienes by β-oxidation from the ω-end. J Biol Chem 266: 24763–24772

    PubMed  CAS  Google Scholar 

  52. Huber M, Müller J, Leier I, Jedlitschky G, Ball HA, Moore KP, Taylor GW, Williams R, Keppler D (1990) Metabolism of cysteinyl leukotrienes in monkey and man. Eur J Biocbem 194: 309–315

    Article  CAS  Google Scholar 

  53. Wheelan P, Zirrolli JA, Morelli JG, Murphy RC (1993) Metabolism of leukotriene B4 by cultured human keratinocytes. Formation of glutathione conjugates and dihydro metabolites. J Biol Chem 268: 25439–25448

    PubMed  CAS  Google Scholar 

  54. Yokomizo T, Ogawa Y, Uozumi N, Kume K, Izumi T, Shimizu T (1996) cDNA cloning, expression and mutagenesis study of leukotriene B4 12-hydroxydehydrogenase. J Biol Chem 271-: 2844–2850

    Article  PubMed  CAS  Google Scholar 

  55. Powell WS, Gravelle F (1989) Metabolism of leukotriene B4 to dihydro and dihydro-oxo products by porcine leukocytes. J Biol Chem 264: 5364–5369

    PubMed  CAS  Google Scholar 

  56. Smith WL, DeWitt DL (1996) Prostaglandin endoperoxide H synthase-1 and-2. Adv Immunol 62: 167–215

    Article  PubMed  CAS  Google Scholar 

  57. Goppelt-Struebe M (1995) Regulation of prostaglandin endoperoxide synthase (cyclooxygenase) isozyme expression. Prostaglandins Leukot Essent Fatty Acids 52: 213–222

    Article  PubMed  CAS  Google Scholar 

  58. Wu KK (1996) Cyclooxygenase 2 induction: molecular mechanism and pathophysio-logic roles. J Lab Clin Med 128: 242–245

    Article  PubMed  CAS  Google Scholar 

  59. Laneuville O, Breuer DK, Xu N, Huang ZH, Gage DA, Watson JT, Lagarde M, DeWitt DL, Smith WL (1995) Fatty acid substrate specificities of human prostaglandin endoperoxide H synthases-1 and-2. Formation of 12-hydroxy-(9Z,13EJZ,15Z)-octadecatri-enoic acids from α-linoleic acid. J Biol Chem 270: 19330–19336

    Article  PubMed  CAS  Google Scholar 

  60. Meade EA, Smith WL, DeWitt DL (1993) Differential inhibition of prostaglandin endoperoxide synthase (cyclooxygenase) isozymes by aspirin and other non-steroidal anti-inflammatory drugs. J Biol Chem 268: 6610–6614

    PubMed  CAS  Google Scholar 

  61. Masferrer JL, Zweifel BS, Manning PT, Hauser SD, Leahy KM, Smith WG, Isakson PC, Seibert K (1994) Selective inhibition of inducible cyclooxygenase 2 in vivo is anti-inflammatory and nonulcerogenic. Proc Natl Acad Sci USA 91: 3288–3232

    Article  Google Scholar 

  62. HammarstrÖm S, Lindgren JÅ, Marcelo C, Duell EA, Anderson TF, Voorhees JJ (1979) Arachidonic acid transformations in normal and psoriatic skin. J Invest Dermatol 73: 180–183

    Article  PubMed  Google Scholar 

  63. Holtzman MJ, Turk J, Pentland A (1989) A regiospecific monooxygenase with novel stereopreference is the major pathway for arachidonic acid oxygenation in isolated epidermal cells. J Clin Invest 84: 1446–1453

    Article  PubMed  CAS  Google Scholar 

  64. Kondoh H, Sato Y, Kanoh H (1985) Arachidonic acid metabolism in cultured mouse keratinocytes. J Invest Dermatol 85: 64–69

    Article  PubMed  CAS  Google Scholar 

  65. Kvedar JC, Levine L (1987) Modulation of arachidonic acid metabolism in a cultured newborn rat keratinocyte cell line. J Invest Dermatol 88: 124–129

    Article  PubMed  CAS  Google Scholar 

  66. Pentland AP, Needleman P (1986) Modulation of keratinocyte proliferation in vitro by endogenous prostaglandin synthesis. J Clin Invest 77: 246–251

    Article  PubMed  CAS  Google Scholar 

  67. Pentland AP, Mahoney MG (1990) Keratinocyte prostaglandin synthesis is enhanced by IL-1. J Invest Dermatol 94: 43–46

    Article  PubMed  CAS  Google Scholar 

  68. Cameron GS, Baldwin JK, Jasheway DW, Patrick KE, Fisher SM (1990) Arachidonic acid metabolism varies with the state of differentiation in density gradient-separated mouse epidermal cells. J Invest Dermatol 94: 292–296

    Article  PubMed  CAS  Google Scholar 

  69. Ujihara M, Horiguchi Y, Ikai K, Urade Y (1988) Characterization and distribution of prostaglandin D synthase in rat skin. J Invest Dermatol 90: 448–451

    Article  PubMed  CAS  Google Scholar 

  70. Needleman P, Turk J, Jakschik BA, Morrison AR, Lefkowith JB (1986) Arachidonic acid metabolism. Ann Rev Biochem 55: 69–102

    Article  PubMed  CAS  Google Scholar 

  71. Weissmann G (1993) Prostaglandins as modulators rather than mediators of inflammation. J Lipid Mediat 6: 275–286

    PubMed  CAS  Google Scholar 

  72. Miller WS, Ruderman FR, Smith JG Jr (1967) Aspirin and ultraviolet light-induced erythema in man. Arch Dermatol 95: 357–358

    Article  PubMed  CAS  Google Scholar 

  73. Snyder DS (1976) Effect of topical indomethacin on UVR-induced redness and prostaglandin E levels in sunburned guinea pig skin. Prostaglandins 11: 631–643

    Article  PubMed  CAS  Google Scholar 

  74. Black AK, Fincham N, Greaves MW, Hensby CN (1980) Time course changes in levels of arachidonic acid and prostaglandins D2, E2 and F in human skin following ultraviolet B irradiation. Br J Clin Pharmacol 10: 453–457

    Article  PubMed  CAS  Google Scholar 

  75. Ruzika T, Walter JF, Printz MP (1983) Changes in arachidonic acid metabolism in UV-irradiated hairless mouse skin. J Invest Dermatol 81: 300–303

    Article  Google Scholar 

  76. Nagayo K (1982) Role of prostaglandin E2 and F in UVB-induced erythema. Jap J Derm Soc 91: 645–652

    Google Scholar 

  77. Imokawa G, Tejima T (1989) A possible role of prostaglandins in PUVA-induced inflammation: implication by organ cultured skin. J Invest Dermatol 91: 296–300

    Article  Google Scholar 

  78. Hanson D, DeLeo V (1990) Long-wave ultraviolet light induces phospholipase activation in cultured human epidermal keratinocytes. J Invest Dermatol 95: 158–163

    Article  PubMed  CAS  Google Scholar 

  79. DeLeo VA, Horlick H, Hanson D, Eisenger M, Harber L (1984) Ultraviolet radiation induces changes in membrane metabolism of human keratinocytes in culture. J Invest Dermatol 83: 323–326

    Article  CAS  Google Scholar 

  80. Grewe M, Trefzer U, Ballhorn A, Gyufko K, Henninger H, Krutmann J (1993) Analysis of the mechanism of ultraviolet (UV) B radiation-induced prostaglandin E2 synthesis by human epidermoid carcinoma cells. J Invest Dermatol 101: 528–531

    Article  PubMed  CAS  Google Scholar 

  81. Ashendel CL, Boutwell R, K (1979) Prostaglandin E and F levels in mouse epidermis are increased by tumor-promoting phorbol ester. Biochem Biophys Res Commun 90: 623–627

    Article  PubMed  CAS  Google Scholar 

  82. Fürstenberger G, deBravo M, Bertsch S, Marks F (1979) The effect of indomethacin on cell proliferation induced by chemical and mechanical means in mouse epidermis in vivo. Res Commun Chem Pathol Pharmacol 24: 533–541

    PubMed  Google Scholar 

  83. Fürstenberger G, Marks F (1978) Indomethacin inhibition of cell proliferation induced by the phorbol ester TPA is reversed by prostaglandin E2 in mouse epidermis in vivo. Biochem Biophys Res Commun 84: 1103–1111

    Article  PubMed  Google Scholar 

  84. Blacker KL, Williams ML, Goldyne ME (1986) 6-Ketoprostaglandin F is a marker for keratinocyte-fibroblast interactions. J Invest Dermatol 86: 464

    Google Scholar 

  85. Scholz K, Fürstenberger G, Müller-Decker K, Marks F (1995) Differential expression of prostaglandin-H synthase isoenzymes in normal and activated keratinocytes in vivo and in vitro. Biocbem J 309: 263–

    CAS  Google Scholar 

  86. Müller-Decker K, Scholz K, Marks F, Fürstenberger G (1995) Differential expression of prostaglandin H synthase isozymes during multistage carcinogenesis in mouse epidermis. Mol Carcinog 12: 31–41

    Article  PubMed  Google Scholar 

  87. Maldve RE, Fischer SM (1996) Multifactor regulation of prostaglandin H synthase-2 in murine keratinocytes. Mol Carcinog 17: 207–216

    Article  PubMed  CAS  Google Scholar 

  88. Mestre JR, Subbaramaiah K, Sacks PG, Schantz SP, Tanabe T, Inoue H, Dannenberg AJ (1997) Retinoids suppress phorbol ester-mediated induction of cyclooxygenase-2. Cancer Res 57: 1081–1085

    PubMed  CAS  Google Scholar 

  89. Hamberg M, Samuelsson B (1967) Oxygenation of unsaturated fatty acids by the vesicular gland of sheep. J Biol Chem 242: 5344–5354

    PubMed  CAS  Google Scholar 

  90. Camp RDR, Mallet AI, Woollard PM, Brain SD, Kobza Black A, Greaves MW (1983) The identification of hydroxy fatty acids in psoriatic skin. Prostaglandins 26: 431–447

    Article  PubMed  CAS  Google Scholar 

  91. Baer AN, Costello PB, Green FA (1990) Free and esterified 13 (R,S)-hydroxyoctadeca-dienoic acids: principal oxygenase products in psoriatic skin scales. J Lipid Res 31: 125–130

    PubMed  CAS  Google Scholar 

  92. Baer AN, Costello P, Green FA (1991) Stereospecificity of the products of the fatty acid oxygenases derived from psoriatic scales. J Lipid Res 32: 341–347

    PubMed  CAS  Google Scholar 

  93. Buchanan MR, Haas TA, Lagarde M, Guichardant M (1985) 13-Hydroyoctadeca-dienoic acid is the vessel wall chemorepellant factor, LOX. J Biol Chem 260: 16056–16059

    PubMed  CAS  Google Scholar 

  94. Iversen L, Fogh K, Bojesen G, Kragballe K (1991) Linoleic acid and dihomogammali-nolenic acid inhibit leukotriene B4 formation and stimulate the formation of their 15-lipoxygenase products by human neutrophils in vitro. Evidence of formation of anti-inflammatory compounds. Agents Actions 33: 286–291

    Article  PubMed  CAS  Google Scholar 

  95. Ku G, Thomas CE, Akeson AL, Jackson RL (1992) Induction of interleukin lβ expression from human peripheral blood monocyte-derived macrophages by 9-hydroxy-octadecadienoic acid. J Biol Chem 267: 14183–14188

    PubMed  CAS  Google Scholar 

  96. Yamaja Setty BN, Berger M, Stuart MJ (1987) 13-Hydroxyoctadecadienoic acid (13-HODE) stimulates prostacyclin production by endothelial cells. Biochem Biophys Res Comm 146: 502–509

    Article  Google Scholar 

  97. Bandyopadhyay GK, Imagawa W, Wallace D, Nandi S (1987) Linoleate metabolites enhance the in vitro proliferative response of mouse mammary epithelial cells to epidermal growth factor. J Biol Chem 262: 2750–2756

    PubMed  CAS  Google Scholar 

  98. Glasgow WC, Eling TE (1991) Epidermal growth factor stimulates linoleic acid metabolism in BALB/c 3T3 fibroblasts. Mol Pharmacol 38: 503–510

    Google Scholar 

  99. Glasgow WC, Afshari CA, Barrett JC, Eling TE (1992) Modulation of the epidermal growth factor mitogenic response by metabolites of linoleic and arachidonic acid in syr-ian hamster embryo fibroblasts. J Biol Chem 267: 10771–10779

    PubMed  CAS  Google Scholar 

  100. Rao GN, Alexander RW, Runge MS (1995) Linoleic acid and its metabolites, hydroper-oxy-octadecadienoic acids, stimulate c-fos, c-jun and c-myc mRNA expression, mitogen activated protein kinase activation and growth in rat aortic smooth muscle cells. J Clin Invest 96: 842–846

    Article  PubMed  CAS  Google Scholar 

  101. Camacho M, Godessart N, AntÓn R, GarcÍa M, Vila L (1995) Interleukin-1 enhances the ability of cultured human umbilical vein endothelial cells to oxidize linoleic acid. J Biol Chem 270: 17279–17286

    Article  PubMed  CAS  Google Scholar 

  102. Godessart N, Camacho M, López-Belmonte J, Antón R, García M, De Moragas JM, Vila L (1996) Prostaglandin H-synthase-2 is the main enzyme involved in the biosynthesis of octadecanoids from linoleic acid in human dermal fibroblasts stimulated with IL-lβ. J Invest Dermatol 107: 726–732

    Article  PubMed  CAS  Google Scholar 

  103. Loftin CD, Eling TE (1996) Prostaglandin synthase 2 expression in epidermal growth factor-dependent proliferation of mouse keratinocytes. Arch Biochem Biophys 330: 419–429

    Article  PubMed  CAS  Google Scholar 

  104. Nugteren DH, Kivits GAA (1987) Conversion of linoleic acid and arachidonic acid by skin epidermal lipoxygenases. Biochim Biophys Acta 921: 135–141

    Article  PubMed  CAS  Google Scholar 

  105. Camacho M, Vila L (1992) Biosynthesis and esterification of 13-hydroxy-eicosate-traenoic acid into phospholipids by human epidermal cells in suspensions. J Invest Dermatol 98: 527

    Google Scholar 

  106. LÓpez S, Vila L, Breviario F, de Castellarnau C (1993) Interleukin I increases 15-hyd-roxyeicosatetraenoic acid formation in cultured human endothelial cells. Biochim Biophys Acta 1170: 17–24

    Article  PubMed  Google Scholar 

  107. Godessart N, Vila L, Puig L, de Moragas JM (1994) Interleukin-1 increases 15-hydroxy-eicosatetraenoic acid production in human dermal fibroblasts. J Invest Dermatol 102: 98–104

    Article  PubMed  CAS  Google Scholar 

  108. Morham SG, Langenbach R, Loftin CD, Tiano HF, Vouloumanos N, Jennette JC, Mahler JF, Kluckman KD, Ledford A, Lee CA et al (1995) Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell 83: 473–482

    Article  PubMed  CAS  Google Scholar 

  109. Evans CB, Pillai S, Goldyne ME (1993) Endogenous prostaglandin E2 modulates calcium-induced differentiation in human skin keratinocytes. Prostaglandins Leukot Essent Fatty Acids 49: 777–781

    Article  PubMed  CAS  Google Scholar 

  110. Leong J, Hughes-Fulford M, Rakhlin N, Habib A, Maclouf J, Goldyne ME (1996) Cyclooxygenases in human and mouse skin and cultured human keratinocytes: association of COX-2 expression with human keratinocyte differentiation. Exp Cell Res 224: 79–87

    Article  PubMed  CAS  Google Scholar 

  111. HammarstrÖm S, Hamberg M, Samuelsson B, Duell AE, Stawiski M, Voorhees JJ (1975) Increased concentrations of nonesterified arachidonic acid, 12L-hydroxy-5,8,10,14-eicosatetraenoic acid, prostaglandin E2 and prostaglandin F in epidermis of psoriasis. Proc Natl Acad Sci USA 72: 5130–5134

    Article  PubMed  Google Scholar 

  112. Fogh K, Kiil J, Herlin T, Ternowitz T, Kragballe K (1987) Heterogeneous distribution of lipoxygenase products in psoriatic skin lesions. Arch Dermatol Res 279: 504–511

    Article  PubMed  CAS  Google Scholar 

  113. Woollard PM (1986) Stereochemical difference between 12-hydroxy-5,8,10,14-eicosate-traenoic acid in platelets and psoriatic lesions. Biochem Biophys Res Commun 136: 169–176

    Article  PubMed  CAS  Google Scholar 

  114. Wollard PM, Cunnigham FM, Murphy GM, Camp RD, Derm FF, Greaves MW (1989) A comparison of the proinflammatory effects of 12(R)-and 12(S)-hydroxy-5,8,10,14-eicosatetraenoic acid in human skin. Prostaglandins 38: 465–471

    Article  PubMed  CAS  Google Scholar 

  115. Woollard PM, Murphy GM, Cunningham FM, Camp RDR, Greaves MW (1988) Proinflammatory effects of 12(R)-hydroxy-5,8,10,14-eicosatetraenoic acid in human skin. Br J Dermatol 118: 277

    Google Scholar 

  116. Bacon KB, Camp RDR (1990) Lipid lymphocyte chemoattractants in psoriasis. Prostaglandins 40: 603–614

    Article  PubMed  CAS  Google Scholar 

  117. Otto WR, Barr RM, Dowd PM, Wright NA, Greaves MW (1989) 12-Hydroxy-5,8,10, 14-eicosatetraenoic acid (12-HETE) does not stimulate proliferation of human neonatal keratinocytes. J Invest Dermatol 92: 683–688

    Article  PubMed  CAS  Google Scholar 

  118. Van de Sandt JJ, Bos TA, Rutten AA (1995) Epidermal cell proliferation and terminal differentiation in skin organ culture after topical exposure to sodium dodecyl sulphate. In Vitro Cell Dev Biol Anim 31: 761–766

    Article  Google Scholar 

  119. Arenberger P, Kemeny L, Rupec R, Bieber T, Ruzicka T (1992) Langerhans cells of the human skin possess high-affinity 12(S)-hydroxyeicosatetraenoic acid receptors. Eur J Immunol 22: 2469–2472

    Article  PubMed  CAS  Google Scholar 

  120. Arenberger P, Kemény L, Ruzicka T (1992) Defect of epidermal 12(S)-hydroxyeicosate-traenoic acid receptors in psoriasis. Eur J Clin Invest 22: 235–243

    Article  PubMed  CAS  Google Scholar 

  121. Capdevila J, Yadagiri P, Manna S, Falck JR (1986) Absolute configuration of the hydroxyeicosatetraenoic acids (HETEs) formed during catalytic oxygenation of arachi-donic acid by microsomal cytochrome P-450. Biochem Biophys Res Commun 141: 1007–1011

    Article  PubMed  CAS  Google Scholar 

  122. Honn KV, Tang DG, Gao X, Butovich IA, Liu B, Timar J, Hagmann W (1994) 12-Lipoxygenases and 12(S)-HETE: role in cancer metastasis. Cancer Metastasis Rev 13:365–396

    Article  PubMed  CAS  Google Scholar 

  123. Chen X-S, Kurre U, Jenkins NA, Copeland NG, Funk CD (1994) cDNA cloning, expression, mutagenesis of C-terminal isoleucine, genomic structure and chromosomal localizations of murine 12-lipoxygenases. J Biol Chem 269: 13979–13987

    PubMed  CAS  Google Scholar 

  124. Takahashi Y, Ueda N, Yamamoto S (1988) Two immunologically and catalytically distinct arachidonate 12-lipoxygenases of bovine platelets and leukocytes. Arch Biochem Biophys 266: 613–621

    Article  PubMed  CAS  Google Scholar 

  125. Takahashi Y, Ramesh Reddy G, Ueda N, Yamamoto S, Arase S (1993) Arachidonate 12-lipoxygenase of platelet-type in human epidermal cells. J Biol Chem 268: 16443–16448

    PubMed  CAS  Google Scholar 

  126. Hussain H, Shornick LP, Shannon VR, Wilson JD, Funk CD, Pentland AP, Holtzman MJ (1994) Epidermis contains platelet-type 12-lipoxygenase that is overexpressed in germinal layer keratinocytes in psoriasis. Am J Physiol 266: C243–C253

    PubMed  CAS  Google Scholar 

  127. Krieg P, Kinzig A, Ress-LÖschke M, Vogel S, Vanlandingham B, Stephan M, Lehmann WD, Marks F, Fürstenberger G (1995) 12-Lipoxygenase isoenzymes in mouse skin tumor development. Mol Carcinog 14: 118–129

    Article  PubMed  CAS  Google Scholar 

  128. Van Dijk KW, Steketee K, Havekes L, Frants R, Hofker M (1995) Genomic and cDNA cloning of a novel mouse lipoxygenase gene. Biochim Biophys Acta 1259: 4–8

    Article  PubMed  Google Scholar 

  129. Funk CD, Keeney DS, Oliw EH, Boeglin WE, Brash AR (1996) Functional expression and cellular localization of a mouse epidermal lipoxygenase. J Biol Chem 271: 23338–23344

    Article  PubMed  CAS  Google Scholar 

  130. Kinzig A, Fiirstenberger G, Bürger F, Vogel S, Müller-Decker K, Mincheva A, Lichter P, Marks F, Krieg P (1997) Murine epidermal lipoxygenase (Aloxe) encodes a 12-lipoxygenase isoform. FEBS Lett 402: 162–166

    Article  PubMed  CAS  Google Scholar 

  131. AntÓn R, Abián J, Vila L (1995) Characterization of arachidonic acid metabolites through the 12-lipoxygenase pathway in human epidermis by high-performance liquid chromatography and gas chromatographyJmass spectrometry. J Mass Spectrom and Rapid Commun Mass Spectrom S169-S182

    Google Scholar 

  132. Fruteau de Laclos B, Borgeat P (1988) Conditions for the formation of the oxo derivatives of arachidonic acid from platelet 12-lipoxygenase and soybean 15-lipoxygenase. Biochim Biophys Acta 958: 424–433

    Article  Google Scholar 

  133. Pace-Asciak CR, GranstrÖm E, Samuelsson B (1983) Arachidonic acid epoxides. Isolation and structure of two hydroxy epoxide intermediates in the formation of 8, 11, 12-and 10,11,12-trihydroxyeicosatrienoic acids. J Biol Chem 258: 6835–6840.

    PubMed  CAS  Google Scholar 

  134. Pace-Asciak CR (1984) Hemoglobin-and hemin-catalyzed transformation of 12L-hydroperoxy-5,8,10,14-eicosatetraenoic acid. Biochim Biophys Acta 793: 485–488

    Article  PubMed  CAS  Google Scholar 

  135. Reynaud D, Demin P, Pace-Asciak CR (1994) Hepoxilin A3 formation in the rat pineal gland selectively utilizes (12S)-hydroperoxy-eicosatetraenoic acid (HPETE), but not (12R)-HPETE. J Biol Chem 269: 23976–23980

    PubMed  CAS  Google Scholar 

  136. Vasiljeva LL, Manukina TA, Demin PM, Lapitskaja MA, Pivnitsky KK (1993) Synthesis, properties and identification of epimeric hepoxilins (-)-(10R)-B3 and (+)-(10S)-B3. Tetrahedron 49: 4099–4106

    Article  CAS  Google Scholar 

  137. Demin PM, Pivnitsky KK, Vasiljeva LL, Pace-Asciak CR (1994) Synthesis of methyl [5,6,8,9,14,15-3H6]-hepoxilin B3 and its conversion into methyl [5,6,8,9,14,15-3H6]-hepoxilin A3. J Label Comp Radiopharm 34: 221–230

    Article  CAS  Google Scholar 

  138. Laneuville O, Corey EJ, Couture R, Pace-Asciak CR (1991) Hepoxilin A3 increases vascular permeability in the rat skin. Eicosanoids 4: 95–97

    PubMed  CAS  Google Scholar 

  139. Wang M-M, Demin PM, Pace-Asciak CR (1996) Epimer-specific actions of hepoxilins A3 and B3 on PAF-and bradykinin-evoked vascular permeability in the rat skin in vivo. Adv Exp Med Biol 416: 239–241

    PubMed  CAS  Google Scholar 

  140. Van Wauwe J, Coene M-C, Van Nyen G, Cools W, Goossens J, Le Jeune L, Lauwers W, Janssen PAJ (1991) NADPH-dependent formation of 15-and 12-hydroxy-eicosatrienoic acid from arachidonic acid by rat epidermal microsomes. Eicosanoids 4: 155–163

    PubMed  Google Scholar 

  141. Murphy RC, Falf JR, Lumin S, Yadagiri P, Zirrolli JA, Balazy M, Masferrer JL, Abraham NG, Schwartzman ML (1988) 12(R)-hydroxyeicosatrienoic acid: a vasodilator cytochrome P450-dependent arachidonate metabolite from the bovine corneal epithelium. J Biol Chem 263: 17197–17202

    PubMed  CAS  Google Scholar 

  142. Masferrer J, Murphy RC, Pagano PJ, Dunn MW, Schwartzman ML (1989) Ocular effects of a novel cytochrome P450-dependent arachidonic acid metabolite. Invest Oph-thalmol Vis Sci 30: 454–460

    CAS  Google Scholar 

  143. Conners MS, Schwartzman ML, Quan X, Heilman E, Chauhan K, Falck JR, Godfrey HP (1995) Enhancement of delayed hypersensitivity inflammatory reactions in guinea pig skin by 12(R)-hydroxy-5,8,14-eicosatrienoic acid. J Invest Dermatol 104: 47–51

    Article  PubMed  CAS  Google Scholar 

  144. Pace-Asciak CR, Lee WS (1989) Purification of hepoxilin epoxide hydrolase from rat liver. J Biol Chem 264: 9310–9313.

    PubMed  CAS  Google Scholar 

  145. Pace-Asciak CR, Laneuville O, Chang M, Reddy CC, Su WG, Corey EJ (1989) New products in the hepoxilin pathway: isolation of 11-glutathionyl hepoxilin A3 through reaction of hepoxilin A3 with glutathione S-transferase. Biochem Biophys Res Commun 163: 1230–1234

    Article  PubMed  CAS  Google Scholar 

  146. Pace-Asciak CR, Laneuville O, Su WG, Corey EJ, Gurevich N, Wu P, Carlen PL (1990). A glutathione conjugate of hepoxilin A3: formation and action in the rat central nervous system. Proc Natl Acad Sci USA 87: 3037–3041

    Article  PubMed  CAS  Google Scholar 

  147. AntÓn R, Puig L, Esgleyes T, de Moragas JM, Vila L (1998) Occurrence of hepoxilins and trioxilins in psoriatic lesions. J Invest Dermatol 110: 303–350

    Article  PubMed  Google Scholar 

  148. Capdevila JH, Karara A, Waxman DJ, Martin MV, Falck JR, Guengerich FP (1990) Cytochrome P-450 enzyme-specific control of the regio-and enantiofacial selectivity of the microsomal arachidonic acid epoxygenase. J Biol Chem 265: 10865–10871

    PubMed  CAS  Google Scholar 

  149. Garssen G J, Veldink GA, Vliegenthart JFG, Boldingh J (1976) The formation of threo- 11-hydroxy-trans-12:13-epoxy-9-cis-octadecenoic acid by enzymic isomerisation of 13-L-hydroperoxy-9-cis, 11-trans-octadecadienoic acid by soybean lipoxygenase-1. Eur J Bioehem 62: 33–36

    Article  CAS  Google Scholar 

  150. Carroll MA, Schwartzman M, Sacerdoti D, McGiff JC (1988) Novel renal arachidonate metabolites. Am J Med Sci 295: 268–274

    Article  PubMed  CAS  Google Scholar 

  151. Rubbo H, Radi R, Trujillo M, Telleri R, Kalyanaraman B, Barnes S, Kirk M, Freeman BA (1994) Nitric oxide regulation of Superoxide and peroxynitrite-dependent lipid per-oxidation. J Biol Chem 269: 26066–26075

    PubMed  CAS  Google Scholar 

  152. Laskey RE, Mathews WR (1996) Nitric oxide inhibits peroxynitrite-induced production of hydroxyeicosatetraenoic acids and F2-isoprostanes in phosphatidylcholine liposomes. Areh Bioehem Biophys 330: 192–198

    Google Scholar 

  153. Kolb-Bachofen V, Fehsel K, Michel G, Ruzicka T (1994) Epidermal keratinocyte expression of inducible nitric oxide synthase in skin lesions of psoriasis vulgaris. Laneet 344: 139–140

    CAS  Google Scholar 

  154. SirsjÖ A, Karlsson M, GidlÖf A, Rollman O, TÖrmä H (1996) Increased expression of inducible nitric oxide synthase in psoriatic skin and cytokine-stimulated cultured ker-atinocytes. Br J Dermatol 134: 643–648

    Article  PubMed  Google Scholar 

  155. Nigam S, Müller S, Pace-Asciak CR (1993) Hepoxilins activate phospholipase D in the human neutrophil. Dev Oncol 71, 249–252

    CAS  Google Scholar 

  156. Reynaud D, Demin P, Pace-Asciak CR (1996) Hepoxilin A3-specific binding in human neutrophils. Biochem J 313: 537–541

    PubMed  CAS  Google Scholar 

  157. Dho S, Grinstein S, Corey EJ, Su WG, Pace-Asciak CR (1990) Hepoxilin A3 induces changes in cytosolic calcium, intracellular pH and membrane potential in human neutrophils. Biochem J 266: 63–68

    PubMed  CAS  Google Scholar 

  158. Laneuville O, Reynaud D, Grinstein S, Nigam S, Pace-Asciak CR (1993) Hepoxilin A3inhibits the rise in free intracellular calcium evoked by formyl-methionyl-leucyl-pheny-lalanine, platelet-activating factor and leukotriene B4. Biochem J 295: 393–397

    PubMed  CAS  Google Scholar 

  159. Tuschil A, Lam C, Haslberger A, Lindley I (1992) Interleukin-8 stimulates calcium transients and promotes epidermal cell proliferation. J Invest Dermatol 99: 294–298

    Article  PubMed  CAS  Google Scholar 

  160. Pace-Asciak CR, Martin JM (1984) Hepoxilin, a new family of insulin secretagogues formed by intact rat pancreatic islets. Prostaglandins Leukot Med 16: 173–180

    Article  PubMed  CAS  Google Scholar 

  161. Pace-Asciak CR, Martin JM, Corey EJ (1986) Hepoxilins potential endogenous mediators of insulin release. Prog Lipid Res 25: 625–628

    Article  PubMed  CAS  Google Scholar 

  162. Piomelli D, Shapiro E, Feinmark SJ, Schwartz JH (1987) Metabolites of arachidonic acid in the nervous system of Aplysia: possible mediators of synaptic modulation. J Neurosci 7: 3675–3686

    PubMed  CAS  Google Scholar 

  163. Pace-Asciak CR (1994) Hepoxilins: a review on their cellular actions. Biochim Biophys Acta 1215: 1–8

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Vila, L., Antón, R., Camacho, M. (1999). Keratinocytes as a cellular source of inflammatory eicosanoids. In: Schröder, JM. (eds) Fatty Acids and Inflammatory Skin Diseases. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8761-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8761-8_7

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9762-4

  • Online ISBN: 978-3-0348-8761-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics