Advertisement

Biosynthesis of fatty acids in the skin and their role in epidermal barrier function

Chapter
Part of the Progress in Inflammation Research book series (PIR)

Abstract

Fatty acids and their derivatives are important cellular structural components and a form of energy storage [1], In the skin extracellular fatty acids are also part of the intercellular stratum corneum lipid layers. These multilamellar lipid bilayers regulate the permeability barrier that prevents excessive water loss and the entry of harmful substances into the skin [2]. Therefore, the epidermal keratinocyte is highly active in synthesis of lipids, including free fatty acids. The synthesis in the skin responds to various pathological conditions, including disturbed permeability barrier function [3]. However, the essential fatty acids, linoleic acid and arachidonic acid, must be aquired from the circulation [4, 5],

Keywords

Stratum Corneum Essential Fatty Acid Fatty Acid Synthesis Lamellar Body Barrier Disruption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Laposata M (1995) Fatty acids: biochemistry to clinical significance. Am J Clin Pathol 104: 172–179PubMedGoogle Scholar
  2. 2.
    Elias PM (1983) Epidermal lipids, barrier function, and desquamation. J Invest Dermatol 88: 445–495Google Scholar
  3. 3.
    Feingold KR (1991) The relation and role of epidermal lipid synthesis. In: Elias PM, Havel RJ, Small DM (eds): Advances in lipid research: Skin lipids. Academic Press, San Diego, 57–82Google Scholar
  4. 4.
    Schürer NY, Plewig G, Elias PM (1991): Stratum corneum lipid function. Dermatologica 183:77–94PubMedCrossRefGoogle Scholar
  5. 5.
    Wertz PW, Cho ES, Downing DT (1983) Effect of essential fatty acid deficiency on the epidermal sphingolipids of the rat. Biochem Biophys Acta 735: 350–355Google Scholar
  6. 6.
    Jie MS (1993): The synthesis of rare and unusual fatty acids. Prog Lipid Res 32: 151–194CrossRefGoogle Scholar
  7. 7.
    Schürer NY, Elias PM (1991) The biochemistry and function of stratum corneum lipids. In: Elias PM, Havel RJ, Small DM (eds): Advances in lipid research: Skin lipids. Academic Press, San Diego, 27–56Google Scholar
  8. 8.
    Hardie GH (1989): Regulation of fatty acid synthesis via phosphorylation of acetyl-CoA carboxylase. Prog Lipid Res 28: 117–146PubMedCrossRefGoogle Scholar
  9. 9.
    Kim KH, Tae HJ (1984) Pattern and regulation of acetyl-CoA carboxylase gene expression. J Nutr 124: 1273s–1283sGoogle Scholar
  10. 10.
    Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (eds) (1989) The molecular biology of the cell, 2nd edn. Garland Publishing, New York, 44–45, 52, 280Google Scholar
  11. 11.
    Jamil H, Madson NB (1987) Phosphorylation state of acetyl-coenzyme A carboxylase. J Biol Chem 262: 630–637PubMedGoogle Scholar
  12. 12.
    Holzer KP, Liu W, Hannes GG (1989) Molecular cloning and sequencing of chicken liver fatty and synthase cDNA. Proc Natl Acad Sci USA 86: 4387–4391PubMedCrossRefGoogle Scholar
  13. 13.
    Amy CM, Witkowski A, Naggert J, Williams B, Randhawa Z, Smith S (1989) Molecular cloning and sequencing of cDNAs encoding the entire rat synthase. Proc Natl Acad Sci USA 86: 3114–3118PubMedCrossRefGoogle Scholar
  14. 14.
    Semenkovich CF, Coleman T, Fiedorek FT (1995: Human fatty acid synthase mRNA: tissue distribution, genetic mapping, and kinetics of decay after glucose deprivation. J Lipid Res 36: 1507–1521PubMedGoogle Scholar
  15. 15.
    Schürer NY (1996) Fettsäure bindende Proteine humaner Keratinozyten. Hensel-Hohenhausen-Verlag, Egelsbuch (Germany), 25–30Google Scholar
  16. 16.
    Buddecke (1977) Grundriss der Biochemie, 5th edn. De Gruyter, Berlin, 203–204Google Scholar
  17. 17.
    Sprecher H, Luthrea DL, Mohammed BS, Baykousheva SV (1995) Reevaluation of the pathways for the biosynthesis of polyunsaturated fatty acids. J Lipid Res 36: 2471–2477PubMedGoogle Scholar
  18. 18.
    Feingold KR, Brown BE, Lear SR, Moser AM (1983) Localisation of de novo sterolo-genesis in mammalian skin. J Invest Dermatol 81: 365–369PubMedCrossRefGoogle Scholar
  19. 19.
    Monger DJ, Williams ML, Feingold KR, Brown BE, Elias PM (1988) Localisation of sites of lipid biosynthesis in mammalian epidermis J Lipid Res 29: 603–612PubMedGoogle Scholar
  20. 20.
    Protey C (1976): Essential fatty acids and the skin. Br J Dermatol 94: 579–583CrossRefGoogle Scholar
  21. 21.
    Elias PM, Brown BE (1978): The mammalian cutaneous permeability barrier: defective barrier function in essential fatty acid defiency correlates with abnormal intercellular lipid deposition. Lab Invest 39: 574–583PubMedGoogle Scholar
  22. 22.
    Proksch E, Feingold KR, Elias PM (1991): Barrier function regulates epidermal lipid and DNA synthesis. J Clin Invest 87: 1668–1673PubMedCrossRefGoogle Scholar
  23. 23.
    Proksch E, KR Feingold, PM Elias (1992) Epidermal HMG CoA reductase activity in essential fatty acid deficiency: barrier requirements rather than eicosanoid generation regulate cholesterol synthesis. J Invest Dermatol 99: 216–220PubMedCrossRefGoogle Scholar
  24. 24.
    Proksch E, WW Holleran, GK Menon, PM Elias, KR Feingold (1993) Barrier function regulates epidermal lipid and DNA synthesis. Br J Dermatol 128: 473–482PubMedCrossRefGoogle Scholar
  25. 25.
    Horrobin DF, Morse PF (1985): Evening primrose oil and atopic dermatitis. Lancet 345: 260–261CrossRefGoogle Scholar
  26. 26.
    Horrobin DF (1989) Essential fatty acids in clinical dermatology. J Am hcad Dermatol 20:1045–1053CrossRefGoogle Scholar
  27. 27.
    Sprecher H, Luthria DL, Mohammed BS, Baykousheva SV (1995) Reevaluation of the pathways for the biosynthesis of polyunsaturated fatty acids. J Lipid Res 36: 2471–2477PubMedGoogle Scholar
  28. 28.
    Schürer NY, Stremmel W, Grundmann JU, Schliep V, Kleinert H, Bass NM, Williams ML (1994) Evidence for a novel keratinocyte fatty acid uptake mechanism with preference for acid: Comparison of oleic and linoleic acid uptake by cultured human ker-atinocytes, fibroblasts and a human hepatoma cell line. Biochim Biophys Acta 1211: 51–60PubMedCrossRefGoogle Scholar
  29. 29.
    Lampe MA, Burlingame AL, Whitney J, Williams ML, Brown BE, Roitman E, Elias PM (1983) Human stratum corneum lipids: characterization and regional variations. J Lipid Res 24: 120–130PubMedGoogle Scholar
  30. 30.
    Menon GK, Grayson S, Elias PM (1986) Cytochemical and biochemical localisation of lipase and sphingomyelinase activity in mammalian epidermis. J Invest Dermatol 86: 591–597PubMedCrossRefGoogle Scholar
  31. 31.
    Wertz PW, Downing DT (1982) Glucolipids in mammalian epidermis: structure and function in the water barrier. Science 217: 1261–1262PubMedCrossRefGoogle Scholar
  32. 32.
    Kerscher M, Korting HC, Schäfer-Korting (1991) Skin ceramides: structure and function. Eur J Dermatol 1: 39–43Google Scholar
  33. 33.
    Wertz PW, Downing DT (1990) Metabolism of linoleic acid in porcine epidermis. J Lipid Res 31: 1839–1844PubMedGoogle Scholar
  34. 34.
    Robson KJ, Stewart ME, Michelsen S, Lazo ND, Downing DT (1994) 6-Hydroxy-4-sphingenine in human epidermal ceramides. J Lipid Res 35: 2060–2068PubMedGoogle Scholar
  35. 35.
    Bouwstra JA, Gooris GS, Dubbelaar TER, Weerheim AM, Izerman AP, Ponec M (1998) Role of ceramide 1 in the molecular organization of the stratum corneum lipids. J Lipid Res 39: 186–196, 1998PubMedGoogle Scholar
  36. 36.
    Grubauer G, Feingold KR, Elias PM (1987) Relationship of epidermal lipogenesis to cutaneous barrier function. J Lipid Res 28: 746–752PubMedGoogle Scholar
  37. 37.
    Ottey AK, Ladonna C, Grunfeld C, Elias PM, Feingold KR (1995) Cutaneous permeability barrier disruption increases fatty acid synthetic enzyme activity in the epidermis of hairless mice. J Invest Dermatol 104: 401–404PubMedCrossRefGoogle Scholar
  38. 38.
    Mao-Qiang M, Elias PM, Feingold KR (1993) Fatty acids are required for epidermal peremeability barrier function. J Clin Invest 92: 791–798PubMedCrossRefGoogle Scholar
  39. 39.
    Harris IR, Farrell AM, Grundfeld C, Holleran WM, Elias PM, Feingold KR (1997) Permeability barrier disruption regulates mRNA levels for key enzymes of cholesterol, fatty acid and ceramide synthesis in the epidermis. J Invest Dermatol 109: 783–789PubMedCrossRefGoogle Scholar
  40. 40.
    Menon GK, Grayson S, Elias PM (1985) Ionic calcium reservoirs in mammalian epidermis: ultrastructural localisation by ion-capture cytochemistry. J Invest Dermatol 84: 508–512PubMedCrossRefGoogle Scholar
  41. 41.
    Menon GK, Elias PM (1991) Ultrastructural localisation of calcium in psoriatic and normal human epidermis. Arch Dermatol 127: 57–63PubMedCrossRefGoogle Scholar
  42. 42.
    Lee SH, Elias PM, Proksch E, Menon GK, Mao-Qiang M, Feingold KR (1992) Calcium and potassium are important regulators of barrier homeostasis in murine epidermis. J Clin Invest 89: 530–588PubMedCrossRefGoogle Scholar
  43. 43.
    Wood LC, Jackson SM, Elias PM, Grunfeld C, Feingold KR (1992) Cutaneous barrier pertubation stimulates cytokine production in the epidermis of mice. J Clin Invest 90: 482–487PubMedCrossRefGoogle Scholar
  44. 44.
    Nickoloff BJ, Naidu Y (1994) Pertubation of epidermal barrier function correlates with initiation of cytokine cascade in human skin. J Am Acad Dermatol 30: 535–546PubMedCrossRefGoogle Scholar
  45. 45.
    Hardardottir J, Moser A, Menon R, Grunfeld C, Feingold KR (1994) Effects of TNF, Il-1 and the combination of both cytokines on cholesterol metabolism in Syrian hamster. Lymphokine Cytokine Res 13: 161–166PubMedGoogle Scholar
  46. 46.
    Liou A, Elias PM, Grunfeld C, Feingold KR, Wood LC (1997) Amphiregulin and nerve growth factor expression are regulated by barrier status in murine epidermis. J Invest Dermatol 108: 73–77PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1999

Authors and Affiliations

  1. 1.Department of DermatologyUniversity of KielKielGermany

Personalised recommendations