Mast Cell Proteases as New Targets for Therapeutic Intervention in Asthma

  • Steven J. Compton
  • Andrew F. Walls
Part of the Progress in Inflammation Research book series (PIR)


Mast cells have long attracted attention for their potential to contribute to the disease process in asthma [1]. These cells are widely distributed throughout the body, but are particularly prevalent in tissues which form an interface with the external environment. In the lower airways mast cells are numerous in the bronchial mucosa [2], submucosa and alveolar walls [3], and are even found free in the lumen [4]. The activation of mast cells by allergen or by other stimuli is associated with the rapid release of a range of potent mediators of inflammation and bronchoconstriction.


Mast Cell Allergy Clin Immunol Mast Cell Activation Human Mast Cell Mast Cell Tryptase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Redington AE, Polosa R, Walls AF, Howarth PH, Holgate ST (1995) The role of mast cells and basophils in bronchial asthma. In: Marone G (ed): Human basophils and mast cells in health and disease. Karger, Basel, 22–59CrossRefGoogle Scholar
  2. 2.
    Djukanovic R, Wilson JW, Britten KM, Wilson SJ, Walls AF, Roche WR, Howarth PH, Holgate ST (1990) Quantitation of mast cells and eosinophils in the bronchial mucosa of symptomatic atopic asthmatics and healthy control subjects using immunohistochemistry. Am Rev Respir Dis 142: 863–871PubMedGoogle Scholar
  3. 3.
    Fox B, Bull TB, Guz A (1981) Mast cells in the human alveolar wall: an electron microscope study. J Clin Pathol 34: 1333–1342PubMedCrossRefGoogle Scholar
  4. 4.
    Walls AF, Roberts JA, Godfrey RC, Church MK, Holgate ST (1990) Histochemical heterogeneity of human mast cells: disease-related differences in mast cell subsets recovered by bronchoalveolar lavage. Int Arch Allergy Appl Immunol 92: 233–241PubMedCrossRefGoogle Scholar
  5. 5.
    Church MK, Holgate ST, Shute JK, Walls AF, Sampson AP (1998) Mast cell derived mediators. In: Middleton E, Reed CE, Ellis E, Adkinson NF, Yunginger JW, Busse WW (eds): Allergy: Principles and practice. Mosby, St Louis, 146–167Google Scholar
  6. 6.
    Schwartz LB, Irani AA, Roller K, Castells MC, Schechter NM (1987) Quantitation of histamine, tryptase and chymase in dispersed human mast cells. J Immunol 138: 2611–2615PubMedGoogle Scholar
  7. 7.
    Goldstein SM, Kaempfer CE, Kealey JT, Wintroub BU (1989) Human mast cell carboxypeptidase: purification and characterisation. J Clin Invest 83: 1630–1636PubMedCrossRefGoogle Scholar
  8. 8.
    Meier HL, Heck LW, Schulman ES, MacGlashan DW (1985) Purified human mast cells and basophils release human elastase and cathepsin G by an IgE-mediated mechanism. Int Arch Allergy Appl Immunol 77: 179–183PubMedCrossRefGoogle Scholar
  9. 9.
    Schechter NM, Irani AA, Soves JL, Abernethy J, Wintroub B, Schwartz LB (1990) Identification of a cathepsin G-like protease in the MCTC type of human mast cell. J Immunol 145: 2652–2661PubMedGoogle Scholar
  10. 10.
    Craig SS, DeBlois G, Schwartz LB (1986) Mast cells in human keloid, small intestine and lung by an immunoperoxidase technique using murine monoclonal antibody against tryptase. Am J Pathol 124: 427–435PubMedGoogle Scholar
  11. 11.
    Irani AA, Schechter NM, Craig SS, De Blois G, Schwartz LB (1986) Two types of human mast cells that have distinct neutral protease compositions. Proc Natl Acad Sci USA 83: 4464–4468PubMedCrossRefGoogle Scholar
  12. 12.
    Irani AA, Golstein SM, Wintroub BU, Bradford T, Schwartz LB (1991) Human mast cell carboxypeptidase: selective localisation to MCTC cells. J Immunol 147: 247–253PubMedGoogle Scholar
  13. 13.
    Huntley JF, Newlands GFJ, Gibson S, Ferguson A, Miller HRP (1985) Histochemical demonstration of chymotrypsin-like serine esterases in mucosal mast cells in four species including man. J Clin Pathol 38: 275–382CrossRefGoogle Scholar
  14. 14.
    Beil WJ, Schulz M, McEuen AR, Buckley MG, Walls AF (1997) Number, fixation properties, dye-binding and protease expression of duodenal mast cells: comparisons between healthy subjects and patients with gastritis or Crohn’s disease. Histochemical J 29: 759–773CrossRefGoogle Scholar
  15. 15.
    Church MK, Okayama Y, Bradding P (1995) Functional mast cell heterogeneity. In: Busse WW, Holgate ST (eds): Asthma and rhinitis. Blackwell Scientific Publication, Boston, 209–220Google Scholar
  16. 16.
    Bradding P, Okayama Y, Howarth PH, Church MK, Holgate ST (1995) Heterogeneity of human mast cells based on cytokine content. J Immunol 155: 297–307PubMedGoogle Scholar
  17. 17.
    Irani AA, Craig SS, DeBlois G, Elson CO, Schechter NM, Schwartz LB (1987) Deficiency of the tryptase-positive, chymase-negative mast cell type in gastrointestinal mucosa of patients with defective T lymphocyte function. J Immunol 138: 4381–4386PubMedGoogle Scholar
  18. 18.
    Bentley AM, Jacobson MR, Cumberworth V, Barkaus JR, Moqbel R, Schwartz LB, Irani AA, Kay AB, Durham SR (1992) Immunohistology of the nasal mucosa in seasonal allergic rhinitis: increases in activated eosinophils and epithelial mast cells. J Allergy Clin Immunol 89: 877–883PubMedCrossRefGoogle Scholar
  19. 19.
    Irani AA, Sampson HA, Schwartz LB (1989) Mast cells in atopic dermatitis. Allergy 44: 31–34PubMedGoogle Scholar
  20. 20.
    Irani AA, Gruber BL, Kaufman LD, Kahalch MD, Shwartz LB (1992) Mast cell changes in scleroderma: presence of MCT cells in the skin and evidence of mast cell activation. Arthritis Rheum 35: 933–939PubMedCrossRefGoogle Scholar
  21. 21.
    Irani AA, Butrus SI, Tabbara KF, Schwartz LB (1990) Human conjunctival mast cells: distribution of MCT and MCTC in vernal conjunctivitis and giant papillary conjunctivitis. J Allergy Clin Immunol 86: 34–40PubMedCrossRefGoogle Scholar
  22. 22.
    Tetlow LC, Woolley DE (1995) Distribution, activation and tryptase/chymase phenotype of mast cells in the rheumatoid lesion. Ann Rheum Dis 54: 549–555PubMedCrossRefGoogle Scholar
  23. 23.
    Buckley MG, Gallagher PJ, Walls AF (1998) Mast cell subpopulations in the synovial tissue of patients with osteoarthritis. Selective increase in numbers of tryptase-positive, chymase negative mast cells. J Pathol 186: 67–74PubMedCrossRefGoogle Scholar
  24. 24.
    Schwartz LB, Lewis RA, Austen KF (1981) Tryptase from human pulmonary mast cells. Purification and characterisation. J Biol Chem 256: 11939–11943PubMedGoogle Scholar
  25. 25.
    Glenner GG, and Cohen LA (1960) Histochemical demonstration of a species-specific trypsin-like enzyme in mast cells. Nature 185: 846–847PubMedCrossRefGoogle Scholar
  26. 26.
    Tanaka T, McRae BJ, Cho K, Cook R, Fraki JE, Johnson DA, Powers JC (1983) Mammalian tissue trypsin-like enzymes. Comparative reactivities of human skin tryptase, human lung tryptase, and bovine trypsin with peptide 4 nitroanilide and thioester substrates. J Biol Chem 258: 3552–3557Google Scholar
  27. 27.
    Smith TJ, Hougland MW, Johnson DA (1984) Human lung tryptase. Purification and characterisation. J Biol Chem 259: 11046–11051PubMedGoogle Scholar
  28. 28.
    Caughey GH (1990) Tryptase and chymase in dog mast cells. In: Schwartz LB (ed): Neutral proteases of mast cells. Monogr Allergy 27: 67–89PubMedGoogle Scholar
  29. 29.
    Braganza VJ, Simmons WH (1991) Tryptase from rat skin: Purification and properties. Biochem 30: 4997–5007CrossRefGoogle Scholar
  30. 30.
    Fiorucci L, Erba F, Ascoli F (1992) Bovine tryptase: purification and characterisation. Biol Chem Hoppe Seyler 373: 483–490PubMedCrossRefGoogle Scholar
  31. 31.
    McEuen AR, He S, Brander ML, Walls AF (1996) Guinea pig lung tryptase: localisation to mast cells and characterisation of the partially purified enzyme. Biochem Pharmacol 52: 331–340PubMedCrossRefGoogle Scholar
  32. 32.
    Robinson TL, Muller DK (1997) Purification and characterisation of cynomolgus monkey tryptase. Comp Biochem Physiol 118B: 783–792Google Scholar
  33. 33.
    Pereira PJB, Bergner A, Macedo-Ribeiro S, Huber R, Matschiner G, Fritz H, Sommerhoff CP, Bode W (1998) Human β-tryptase is a ring like tetramer with active sites facing a central pore. Nature 392: 306–311PubMedCrossRefGoogle Scholar
  34. 34.
    Miller JS, Westin EH, Schwartz LB (1989) Cloning and characterisation of complementary DNA for human tryptase. J Clin Invest 84: 1188–1195PubMedCrossRefGoogle Scholar
  35. 35.
    Miller JS, Moxley G, Schwartz LB (1990) Cloning and characterisation of a second complementary DNA for human tryptase. J Clin Invest 86: 864–870PubMedCrossRefGoogle Scholar
  36. 36.
    Vanderslice P, Ballinger SM, Tam EK, Goldstein SM, Craik CS, Caughey GH (1990) Human mast cell tryptase: multiple cDNAs and genes reveal a multigene serine protease family. Proc Natl Acad Sci USA 87: 3811–3815PubMedCrossRefGoogle Scholar
  37. 37.
    Schwartz LB, Sakai K, Bradford TR, Ren S, Zweiman B, Worobec A, Metcalfe DD (1995) The α form of tryptase is the predominant type present in blood at baseline in normal subjects and is elevated in those with systemic mastocytosis. J Clin Invest 96: 2702–2710PubMedCrossRefGoogle Scholar
  38. 38.
    Sakai K, Ren S, Schwartz LB (1996) A novel heparin-dependent processing pathway for human tryptase: autocatalysis followed by activation with dipeptidyl peptidase I. J Clin Invest 97: 988–995PubMedCrossRefGoogle Scholar
  39. 39.
    Buckley MG, Walters C, Wong WM, Cawley, MID, Ren S, Schwartz LB, Walls AF (1997) Mast cell activation in arthritis: detection of α and β tryptase, histamine and eosinophil cationic protein in synovial fluid. Clin Sci 93: 363–370PubMedGoogle Scholar
  40. 40.
    Schwartz LB, Bradford TR (1986) Regulation of tryptase from human lung mast cells by heparin. J Biol Chem 261: 7372–7379PubMedGoogle Scholar
  41. 41.
    Alter SC, Metcalfe DD, Bradford TR, Schwartz LB (1987) Stabilisation of human mast cell tryptase: effects of enzyme concentration, ionic strength and the structure and negative charge of polysaccharides. Biochem J 247: 821–827Google Scholar
  42. 42.
    Deyoung MB, Nemeth EF, Scarpa A (1987) Measurement of the internal pH of mast cell granules using microvolumetric fluorescence and isotopic techniques. Arch Biochem Biophys 254: 222–233CrossRefGoogle Scholar
  43. 43.
    Lagunoff D, Rickard A (1983) Evidence for control of mast cell granule protease in situ by low pH. Exp Cell Res 144: 353–360PubMedCrossRefGoogle Scholar
  44. 44.
    Alter SC, Schwartz LB (1989) Effect of histamine and divalent cations on the activity and stability of tryptase from human mast cells. Biochem Biophys Acta 991: 426–430PubMedCrossRefGoogle Scholar
  45. 45.
    Ren S, Lawson AE, Carr M, Baumgarten CM, and Schwartz LB (1997) Human tryptase fibrinogenolysis is optimal at acidic pH and generates anticoagulant fragments in the presence of the anti-tryptase monoclonal antibody B12. J Immunol 159: 3540–3548PubMedGoogle Scholar
  46. 46.
    Sommerhoff CP, Sollner C, Mentele R, Piechottka GP, Auerswald EA, Fritz H (1994) A Kazal-type inhibitor of human mast cell tryptase: Isolation from the medicinal leech Hirudo medicinalis, characterisation, and sequence analysis. Biol Chem Hoppe-Seyler 375: 685–694PubMedCrossRefGoogle Scholar
  47. 47.
    Alter SC, Kramps JA, Janoff A, Shwartz LB (1990) Interactions of human mast cell tryptase with biological protease inhibitors. Arch Biochem Biophys 276: 26–31PubMedCrossRefGoogle Scholar
  48. 48.
    Robinson T, Delaria K, Harris P, Lindell D, Gundell D, Muller D (1986) Secretory leukocyte protease inhibitor as an inhibitor of mast cell tryptase. Am J Respir Crit Care Med 153: 455Google Scholar
  49. 49.
    Elrod KC, Moore WR, Abraham WM, Tanaka RD (1997) Lactoferrin, a potent tryptase inhibitor, abolishes late-phase airway responses in allergic sheep. Am J Respir Crit Care Med 156: 375–381PubMedGoogle Scholar
  50. 50.
    Goldstein SM, Leong J, Schwartz LB, Cooke D (1992) Protease composition of exocytosed human skin mast cell protease-proteoglycan complexes: tryptase resides in a complex distinct from chymase and carboxypeptidase. J Immunol 148: 2475–2482PubMedGoogle Scholar
  51. 51.
    Tam EK, Caughey GH (1990) Degradation of airway neuropeptides by human lung tryptase. Am Rev Respir Cell Mol Biol 3: 27–32Google Scholar
  52. 52.
    Walls AF, Brain SD, Desai A, Jose PJ, Hawkings E, Church MK, Williams TJ (1992) Human mast cell tryptase attenuates the vasodilator activity of calcitonin gene related peptide. Biochem Pharmacol 43: 1243–1248PubMedCrossRefGoogle Scholar
  53. 53.
    Palmer JBD, Cuss FMC, Barnes PJ (1987) VIP and PHM and their role in noradrenergic inhibitory responses in isolated human airways. J Appl Physiol 61: 1322–1328Google Scholar
  54. 54.
    Brain SD, Williams TJ, Tippins JR, Morris HR, MacIntyre I (1985) Calcitonin gene related peptide is a potent vasodilator. Nature 313: 54–56PubMedCrossRefGoogle Scholar
  55. 55.
    Schwartz LB, Maier M, Spragg J (1986) Interaction of low molecular weight kininogen with human mast cell tryptase. Adv Exp Med Biol 198A: 105–111CrossRefGoogle Scholar
  56. 56.
    Maier M, Spragg J, Schwartz LB (1983) Inactivation of human high molecular weight kininogen by human mast cell tryptase. J Immunol 130: 2353–2356Google Scholar
  57. 57.
    Walls AF, Bennett AR, Suieras-Diaz J, Olsson H (1992) The kininogenase activity of human mast cell tryptase. Biochem Soc Trans 20: 260SPubMedGoogle Scholar
  58. 58.
    Proud D, Siekierski ES, Bailey GS (1988) Identification of human lung mast cell kininogenase as tryptase and relevance of tryptase kininogenase activity. Biochem Pharmacol 37: 1473–1480PubMedCrossRefGoogle Scholar
  59. 59.
    Schwartz LB, Bradford TR, Littman BH, Wintroub BU (1985) The fibrinogenolytic activity of purified tryptase from human lung mast cells. J Immunol 135: 2762–2767PubMedGoogle Scholar
  60. 60.
    Gruber BL, Schwartz LB (1990) The mast cell as an effector of connective tissue degradation: a study of matrix susceptibility to human mast cells. Biochem Biophys Res Commun 171: 1272–1278PubMedCrossRefGoogle Scholar
  61. 61.
    Lohi J, Harvima I, Keski-Oja J (1992) Pericellular substrates of human mast cell tryptase: 72,000 dalton gelatinase and fibronectin. J Cell Biochem 50: 337–349PubMedCrossRefGoogle Scholar
  62. 62.
    Gruber BL, Marchese MJ, Suziki K, Schwartz LB, Okada Y, Nagase H, Ramamurthy NS (1989) Synovial procollagenase activation by human mast cell tryptase. Dependence upon matrix metalloproteinase 3 activation. J Clin Invest 84: 1657–1662PubMedCrossRefGoogle Scholar
  63. 63.
    Gruber BL, Schwartz LB, Ramamurthy NS, Irani AA, Marchese MJ (1988) Activation of latent rheumatoid synovial collagenase by human mast cell tryptase. J Immunol 140: 3936–3942PubMedGoogle Scholar
  64. 64.
    Stack MS, Johnson DA (1994) Human mast cell tryptase activates single-chain urinary-type plasminogen activator (pro-urokinase). J Biol Chem 269: 9416–9419PubMedGoogle Scholar
  65. 65.
    Ruoss SJ, Hartmann T. and Caughey GH (1991) Mast cell tryptase is a mitogen for cultured fibroblasts. J Clin Invest 88: 493–499PubMedCrossRefGoogle Scholar
  66. 66.
    Hartmann T, Ruoss SJ, Raymond WW, Seuwen K, Caughey GH (1992) Human tryptase is a potent, cell-specific mitogen: role of signalling pathways in synergistic responses. Am J Physiol (Lung Cell Mol Physiol 6) 262: L528Google Scholar
  67. 61.
    Cairns, JA, Walls AF (1997) Mast cell tryptase stimulates the synthesis of type I collagen in human lung fibroblasts. J Clin Invest 99: 1313–1321PubMedCrossRefGoogle Scholar
  68. 68.
    Cairns JA, Walls AF (1996) Mast cell tryptase is a mitogen for epithelial cells. Stimulation of IL-8 production and intercellular adhesion molecule-1 expression. J Immunol 156: 275–283PubMedGoogle Scholar
  69. 69.
    Thabrew H, Cairns JA, Walls AF (1996) Mast cell tryptase is a growth factor for human airway smooth muscle. J Allergy Clin Immunol 97: 969CrossRefGoogle Scholar
  70. 70.
    Brown JK, Tyler CL, Jones CA, Ruoss SJ, Hartmann T, and Caughey GH (1995) Tryptase, the dominant secretory granular protein in human mast cells, is a potent mitogen for cultured dog tracheal smooth muscle cells. Am J Respir Cell Mol Biol 13: 227–236PubMedGoogle Scholar
  71. 71.
    Blair RJ, Meng H, Marchese MJ, Ren S, Schwartz LB, and Tonnesen MG (1997) Human mast cells stimulate vascular tube formation: tryptase is a novel potent angiogenic factor. J Clin Invest 99: 2691–2700PubMedCrossRefGoogle Scholar
  72. 72.
    Compton SJ, Cairns JA, Holgate ST, Walls AF (1998) The role of mast cell tryptase in regulating endothelial cell proliferation, cytokine release and adhesion molecule expression: Tryptase induces expression of mRNA for IL-lβ and IL-8 and stimulates the selective release of IL-8 from human umbilical vein endothelial cells. J Immunol 161: 1939–1946PubMedGoogle Scholar
  73. 73.
    Gruber BL, Kew RR, Jelaska A, Marchese MJ, Garlick J, Ren S, Schwartz LB, Korn JH (1997) Human mast cells activate fibroblasts. J Immunol 158: 2310–2317PubMedGoogle Scholar
  74. 74.
    He S, Walls AF (1997) Human mast cell tryptase: A stimulus of microvascular leakage and mast cell activation. Eur J Pharmacol 328: 89–97PubMedCrossRefGoogle Scholar
  75. 75.
    He S, Peng Q, Walls AF (1997) Potent induction of a neutrophil and eosinophil-rich infiltrate in vivo by human mast cell tryptase: Selective enhancement of eosinophil recruitment by histamine. J Immunol 159: 6216–6225PubMedGoogle Scholar
  76. 76.
    He S, Gaca MDA, Walls AF (1998) A role for tryptase in the activation of human mast cells: modulation of histamine release by tryptase and inhibitors of tryptase. J Pharmacol Exp Ther 286: 289–297PubMedGoogle Scholar
  77. 77.
    Compton SJ, Cairns JA, Holgate ST, Walls AF (1999) Interaction of human mast cell tryptase to stimulate endothelial cell recruitment. Int Arch Allergy Immunol; in press Google Scholar
  78. 78.
    Ohkuni Y, Illig M, Numerof R, Takigawa K, Rennard SI (1997) Tryptase synergistically augments cytokine release from human lung fibroblasts in the presence of TGF-β or IL-4 driven cytokine. Am J Respir Crit Care Med 155: A182Google Scholar
  79. 79.
    Jung K-S, Cairns JA, Church MK, Shute JK, Walls AF (1994) Human mast cell tryptase can induce eosinophil chemotaxis and secretion. Clin Exp Allergy 24: 988AGoogle Scholar
  80. 80.
    Vu T-K, Hung DT, Wheaton VI, and Coughlin SR (1991) Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64: 1057–1068PubMedCrossRefGoogle Scholar
  81. 81.
    Molino M, Barnathan ES, Numero R, Clark J, Dreyer M, Cumashi A, Hoxie JA, Schechter N, Woolkalis M, Brass LF (1997) Interactions of mast cell tryptase with thrombin receptors and PAR-2. J Biol Chem 272: 4043–4049PubMedCrossRefGoogle Scholar
  82. 82.
    Mirza H, Yatsula V, Bahou WF (1996) The proteinase activated receptor 2 (PAR-2) mediates mitogenic responses in human vascular endothelial cells. J Clin Invest 97: 1705–1714PubMedCrossRefGoogle Scholar
  83. 83.
    Molino M, Raghunath PN, Kuo A, Ahuja M, Hoxie JA, Brass LF, Barnathan ES (1998) Differential expression of functional protease-activated receptor-2 (PAR-2) in human vascular smooth muscle cells. Arterioscler Tromb Vasc Biol 18: 825–832CrossRefGoogle Scholar
  84. 84.
    Santulli RJ, Derian CK, Darrow AL, Tomko KA, Eckardt AJ, Seiberg M, Scarborough RM, Andrade-Gorden P (1995) Evidence for the presence of a protease-activated receptor distinct from the thrombin receptor in human keratinocytes. Proc Natl Acad Sci USA 92: 9151–9155PubMedCrossRefGoogle Scholar
  85. 85.
    Corvera CU, Dery O, McConalogue K, Bohm SK, Khitin LM, Caughey GH, Payan DG, Bunnett NW (1997) Mast cell tryptase regulates rat colonie myocytes through proteinase-activated receptor 2. J Clin Invest 100: 1383–1393PubMedCrossRefGoogle Scholar
  86. 86.
    Howells GL, Macey MG, Chinni C, Hou L, Fox MT, Harriott P, Stone SR (1997) Proteinase-activated receptor-2: expression by human neutrophils. J Cell Sci 110: 881–887PubMedGoogle Scholar
  87. 87.
    Kong W, McConalogue, Khitin LM, Hollenberg MD, Payan DG, Bohmm SK, Bunnett NG (1997) Luminal trypsin may regulate enterocytes through proteinase-activated receptor 2. Proc Natl Acad Sci 94: 8884–8889PubMedCrossRefGoogle Scholar
  88. 88.
    Ishihara H, Connolly AJ, Zeng D, Kahn ML, Zheng YW, Timmons C, Tram T, Coughlin SR (1997) Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386: 502–506PubMedCrossRefGoogle Scholar
  89. 89.
    Schechter NM, Fraki JE, Geesin JC, Lazarus GC (1983) Human skin chymotryptic protease. Isolation and relation to cathepsin G and rat mast cell proteinase I. J Biol Chem 258: 2973–2978PubMedGoogle Scholar
  90. 90.
    Urata H, Knoshita A, Misono KS, Bumpus FM, Husain A (1990) Identification of a highly specific chymase as the major angiotensin II forming enzyme in the human heart. J Biol Chem 265: 22348–22357PubMedGoogle Scholar
  91. 91.
    Sukenaga Y, Kido H, Neki, Enomoto M, Ishida K, Takagi K, Katunuma N (1993) Purification and molecular cloning of chymase from human tonsils. FEBS Lett 323: 119–122PubMedCrossRefGoogle Scholar
  92. 92.
    Lutzelschwab C, Pejler G, Aveskogh M, Hellman L (1997) Secretory granule proteases in rat mast cells. Cloning of 10 different serine proteases and a carboxypeptidase A from various rat mast cell populations. J Exp Med 185: 13–29PubMedCrossRefGoogle Scholar
  93. 93.
    Urata H, Kinoshita A, Perez DM, Misono KS, Bumpus FM, Graham RM, Huain A (1991) Cloning of the gene and cDNA for human heart chymase. J Biol Chem 266: 17173–17179PubMedGoogle Scholar
  94. 94.
    Schechter NM, Wang ZM, Blacher RW, Lessin SR, Lazarus GS, Rubin H (1994) Determination of the primary structures of human skin chymase and cathepsin G from cutaneous mast cells of urticaria pigmentosa lesions. J Immunol 152: 4062–4069PubMedGoogle Scholar
  95. 95.
    McEuen AR, Gaca MDA, Buckley MG, He S, Gore MG, Walls AF (1998) Two distinct forms of human mast cell chymase. Differences in affinity for heparin and in distribution in skin, heart, and other tissues. Eur J Biochem 256: 461–470PubMedCrossRefGoogle Scholar
  96. 96.
    Heidtmann HH, Tavis J (1993) A novel chymotrypsin-like serine protease from human lung. Biol Chem Hoppe-Seyler 374: 871–875PubMedCrossRefGoogle Scholar
  97. 97.
    McEuen AR, Sharma B, Walls AF (1995) Regulation of the activity of human chymase during storage and release from mast cells: the contributions of inorganic cations, pH, heparin and histamine. Biochim Biophys Acta 1267: 115–121PubMedCrossRefGoogle Scholar
  98. 98.
    McEuen AR, Ashworth DM, Walls AF (1998) The conversion of recombinant human mast cell prochymase to enzymatically active chymase by dipeptidyl peptidase I is inhibited by heparin and histamine. Eur J Biochem 253: 300–308PubMedCrossRefGoogle Scholar
  99. 99.
    Goldstein SM, Leong J, Schwartz LB, Cooke D (1992) Protease composition of exocytosed human skin mast cell protease-proteoglycan complexes. Tryptase resides in a complex distinct from chymase and carboxypeptidase. J Immunol 148: 2475–2482PubMedGoogle Scholar
  100. 100.
    Schechter NM, Sprows J L, Schoenberger OL, Lazarus GS, Cooperman BS, Rubin H (1989) Reaction of human skin chymotrypsin-like proteinase chymase with plasma proteinase inhibitors. J Biol Chem 264: 21308–21315PubMedGoogle Scholar
  101. 101.
    Walter M, Plotnick M, Schechter NM (1996) Inhibition of human mast cell chymase by secretory leukocyte proteinase inhibitor: enhancement of the interaction by heparin. Arch Biochem Biophys 327: 568–571CrossRefGoogle Scholar
  102. 102.
    Powers JC, Takumi T, Harper JW, Minematsu Y, Barker L, Lincoln D, Crumley KV (1985) Mammalian chymotrypsin-like enzymes: comparative reactivities of rat mast cell proteases, human and dog skin proteases and human cathepsin G with peptide-4-nitroanilide substrates and with peptide chloromethyl ketone and sulphonyl fluoride inhibitors. Biochem 24: 2048–2058CrossRefGoogle Scholar
  103. 103.
    Urata H, Kinoshita A, Misono KS, Bumpus FM, Husain A (1990) Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J Biol Chem 265: 22348–22357PubMedGoogle Scholar
  104. 104.
    Briggamon RA, Schechter NM, Fraki J, Lazarus GS (1984) Degradation of the epidermal-dermal junction by proteolytic enzymes from human skin and polymorphonuclear leukocytes. J Exp Med 160: 1027–1042CrossRefGoogle Scholar
  105. 105.
    Kofford MW, Schwartz LB, Schechter NM, Yager DR, Diegehnan RF, Graham MF (1997) Cleavage of type I procollagen by human mast cell chymase initiates collagen fibril formation and generates a unique carboxyl terminal propeptide. J Biol Chem 272: 7127–7131PubMedCrossRefGoogle Scholar
  106. 106.
    Saarinen J, Kalkkinen N, Welgus HG, Kovanen PT (1994) Activation of human interstitial procollagenase through direct cleavage of the Leu 83-Thr 84 bond by mast cell chymase. J Biol Chem 269: 18134–18140PubMedGoogle Scholar
  107. 107.
    Tunon De Lara JM, Okayama Y, McEuen AR, Heusser CH, Church MK, Walls AF (1994) Release and inactivation of interleukin 4 by mast cells. Ann NY Acad Sci 725: 50–58CrossRefGoogle Scholar
  108. 108.
    Mizutani H, Schechter N, Lazarus G, Black RA, Kupper TS (1991) Rapid and specific conversion of precursor interleukin 1β (IL-β) to an active IL-I species by human mast cell chymase. J Exp Med 174: 821–825PubMedCrossRefGoogle Scholar
  109. 109.
    Longley BJ, Tyrrell L, Ma YS, Williams DA, Halaban R, Langley K, Lu HS, Schechter NM (1997) Chymase cleavage of stem cell factor yields a bioactive, soluble product. Proc Natl Acad Sci USA 94: 9017–9021PubMedCrossRefGoogle Scholar
  110. 110.
    He S, Walls AF (1998) The induction of a prolonged increase in microvascular permeability by human mast cell chymase. Eur J Pharmacol 352: 91–98PubMedCrossRefGoogle Scholar
  111. 111.
    He S, Garca MDA, Walls AF (1997) The regulation of mast cell histamine release by human mast cell chymase and chymase inhibitors. J Allergy Clin Immunol 99: 588Google Scholar
  112. 112.
    He S, Walls AF (1998) Human mast cell chymase induces the accumulation of neutrophils and eosinophils and other inflammatory cells in vivo. Br J Pharmacol 125: 1491–1500PubMedCrossRefGoogle Scholar
  113. 113.
    Sommerhoff CP, Caughey GH, Finkbeiner WE, Lazarus SC, Basbaum CB, Nadel JA (1989) Mast cell chymase. A potent secretagogue for airway gland serous cells. J Immunol 142: 2450–2456PubMedGoogle Scholar
  114. 114.
    Goldstein SM, Kaempfer CE, Proud D, Schwartz LB, Irani AA, and Wintroub BU (1987) Detection and partial characterisation of a human mast cell carboxypeptidase. J Immunol 139: 2724–2729PubMedGoogle Scholar
  115. 115.
    Goldstein SM, Kaempfer CE, Kealey JT, Wintroub BU (1989) Human mast cell carboxypeptidase: purification and characterisation. J Clin Invest 83: 1630–1636PubMedCrossRefGoogle Scholar
  116. 116.
    Reynolds DS, Gurley DS, Stevens RL, Sugarbaker DJ, Austen KF, Serafin WE (1989) Cloning of cDNAs that encode human mast-cell carboxypeptidase-A, and comparison of the protein with mouse mast-cell carboxypeptidase-A and rat pancreatic carboxypeptidase. Proc Natl Acad Sci USA 86: 9480–9484PubMedCrossRefGoogle Scholar
  117. 117.
    Natsuaki M, Stewart CB, Vanderslice P, Schwartz LB, Natsuaki M, Wintroub BU, Rutter WJ, Goldstein SM (1992) Human skin mast-cell carboxypeptidase: functional-characterization, cDNA cloning, and genealogy. J Invest Dermatol 99: 138–145PubMedCrossRefGoogle Scholar
  118. 118.
    Goldstein SM, Leong J, Bunnett NW (1991) Human mast cell proteases hydrolyse neurotensin, kinetensin and Leu5-enkephalin. Peptides 12: 995–1000PubMedCrossRefGoogle Scholar
  119. 119.
    Clark JM, Abraham WM, Fishman CE, Forteza R, Ahmed A, Cortes A, Warne RL, Moore WR, Tanaka RD (1995) Tryptase inhibitors block allergen induced airway and inflammatory responses in allergic sheep. Am J Respir Crit Care Med 152: 2076–2083PubMedGoogle Scholar
  120. 120.
    Elrod KC, Moore WR, Abraham WM, Tanaka RD (1997) Lactoferrin, a potent tryptase inhibitor, abolishes late-phase airway responses in allergic sheep. Am J Respir Crit Care Med 156: 375–381PubMedGoogle Scholar
  121. 121.
    Krishna MT, Chauhan AJ, Little L, Sampson K, Mant TGK, Hawksworth R, Djukanovic R, Lee TH, Holgate ST (1998) Effect of inhaled APC-366 on allergen-induced bronchoconstriction and airway hyperresponsiveness to histamine in atopic asthmatics. Am J Respir Crit Care Med 157: A456Google Scholar
  122. 122.
    Holloway L, Beasley R, Roche W (1995) The pathology of fatal asthma. In: Busse WW, Holgate ST (eds): Asthma and rhinitis. Blackwell Scientific Publications, Boston 109–117Google Scholar

Copyright information

© Springer Basel AG 1999

Authors and Affiliations

  • Steven J. Compton
    • 1
  • Andrew F. Walls
    • 1
  1. 1.Immunopharmacology GroupUniversity of Southampton, Southampton General HospitalSouthamptonUK

Personalised recommendations