Advertisement

Cytokine and Adhesion Molecule Antagonists

  • Paul S. Foster
  • Simon P. Hogan
Chapter
  • 86 Downloads
Part of the Progress in Inflammation Research book series (PIR)

Abstract

The proposed central role of specific leukocyte subsets in the pathophysiology of asthma has focused attention on the development of agents that will selectively inhibit the migration of these inflammatory cells into the lung. In asthma, airway CD4+ Th2 type lymphocytes, mast cells and eosinophils appear to be primarily effector cells that underlie the clinical manifestations of disease [1]. The cellular and molecular mechanisms involved in the regulation of the recruitment of these inflammatory cells from the blood to sites of inflammation are complex, however, cellular migration appears to be modulated by two fundamental processes; cell-adhesion systems located in the vascular endothelium and signals elicited through cytokine and chemokine (chemoattractant cytokines) receptors. Cell-adhesion and cytokine signalling systems form networks that are elegantly coordinated to promote cellular extravasation and localisation to the site of inflammation [2, 3]. At the initiation of inflammation, cytokines and chemokines play key roles in propagating the inflammatory response by eliciting signals that activate adhesion-systems, induce the secretion of other cytokines/chemokines from the vascular bed and promote chemotaxis. The type of cytokines produced in response to a particular inflammatory stimulus are intimately involved in directing the immune response by promoting the selective mobilization, attachment and recruitment of specific leukocyte sub-sets to the site of provocation [2–4].

Keywords

Respir Crit Adhesion System Airway Hyperresponsiveness Allergic Inflammation Allergic Airway Inflammation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bochner B, Undem B, Lichtenstein L (1994) Immunological aspects of allergic asthma. Annu Rev Immunol 12: 295–335PubMedCrossRefGoogle Scholar
  2. 2.
    Springer T (1990) Adhesion receptors of the immune system. Nature 346: 425–434PubMedCrossRefGoogle Scholar
  3. 3.
    Carlos T, Harlan J (1994) Leukocyte-endothelial adhesion molecules. Blood 84: 2068–2101PubMedGoogle Scholar
  4. 4.
    Hogan S, Foster P (1997) Cytokines as targets for the inhibition of eosinophilic inflammation. Pharmacol Ther 74: 259–283PubMedCrossRefGoogle Scholar
  5. 5.
    Robinson D, Hamid Q, Ying S, Tsicopoulos A, Barkans J, Bentley A, Corrigan C, Durham S, Kay A (1992) Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. New Eng Med J Med 326: 298–304CrossRefGoogle Scholar
  6. 6.
    Finkelman F, Katona I, Urban J, Holmes J, Ohara J, Tung A, Sample J, Paul W (1988) IL-4 is required to generate and sustain in vivo IgE responses. J Immunol 141: 2335–2341PubMedGoogle Scholar
  7. 7.
    Rothenberg M, Luster A, Leder P (1995) Murine eotaxin: an eosinophil chemoattractant inducible in endothelial cells and in interleukin 4-induced tumor suppression. Proc Natl Acad Sci USA 92: 8960–8964PubMedCrossRefGoogle Scholar
  8. 8.
    Pober J, Gimbrone M Jr, Lapierre L, Mendrick D, Fiers W, Rothlein R, Springer T (1986) Overlapping patterns of activation of human endothelial cells by interleukin-1, tumor necrosis factor, and gamma interferon. J Immunol 137: 1893–1896PubMedGoogle Scholar
  9. 9.
    Walsh G, Hartneil A, Wardlaw A, Kurihara K, Sanderson C, Kay A (1990) IL-5 enhances the in vitro adhesion of human eosinophils, but not neutrophils, in a leucocyte integrin (CD11/18)-dependent manner. Immunology 71: 258–265PubMedGoogle Scholar
  10. 10.
    Hamid Q, Azzawi M, Ying S, Moqbel R, Wardlaw A, Corrigan C, Bradley B, Durham S, Collins J, Jeffery P et al (1991) Interleukin-5 in the pathogenesis of asthma. J Clin Invest 87: 1541–1546PubMedCrossRefGoogle Scholar
  11. 11.
    Yamaguchi Y, Hayashi Y, Sugama Y, Miura Y, Kasahara T, Kitamura S, Torisu M, Mita S, Tominaga A, Takatsu K (1988) Highly purified murine interleukin 5 (IL-5) stimulates eosinophil function and prolongs in vitro survival. IL-5 as an eosinophil chemotactic factor. J Exp Med 167: 1737–1742PubMedCrossRefGoogle Scholar
  12. 12.
    Wang J, Rambaldi A, Biondi A, Chen Z, Sanderson C, Mantovani A (1989) Recombinant human interleukin-5 is a selective eosinophil chemoattractant. Eur J Immunol 19: 701–705PubMedCrossRefGoogle Scholar
  13. 13.
    Foster P, Hogan S, Ramsay A, Matthaei K, Young I (1996) Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med 183: 195–201PubMedCrossRefGoogle Scholar
  14. 14.
    Dahinden C, Geiser T, Brunner T, von Tscharner V, Caput D, Ferrara P, Minty A, Baggiolini M (1994) Monocyte chemotactic protein 3 is a most effective basophil-and eosinophil-activating chemokine. J Exp Med 179: 751–756PubMedCrossRefGoogle Scholar
  15. 15.
    Rot A, Krieger M, Brunner T, Bischoff S, Schall T, Dahinden C (1992) RANTES and macrophage inflammatory protein-1 alpha induce the migration and activation of normal human eosinophil granulocytes. J Exp Med 176: 1489–1495PubMedCrossRefGoogle Scholar
  16. 16.
    Jose P, Griffiths Johnson D, Collins P, Walsh D, Moqbel R, Totty N, Truong O, Hsuan J, Williams T (1994) Eotaxin: a potent eosinophil chemoattractant cytokine detected in a guinea pig model of allergic airways inflammation. J Exp Med 179: 881–887PubMedCrossRefGoogle Scholar
  17. 17.
    Collins P, Marleau S, Griffiths-Johnson D, Jose P, Williams T (1995) Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo. J Exp Med 182: 1169–1174PubMedCrossRefGoogle Scholar
  18. 18.
    Mould A, Matthaei K, Young I, Foster P (1997) Relationship between interleukin-5 and eotaxin in regulating blood and tissue eosinophilia in mice. J Clin Invest 99: 1064–1071PubMedCrossRefGoogle Scholar
  19. 19.
    Hogan S, Foster P (1996) Cellular and molecular mechanisms involved in the regulation of eosinophil trafficking in vivo. Med Res Reviews 16: 407–432CrossRefGoogle Scholar
  20. 20.
    Bloemen P, Henricks P, Nijkamp F (1997) Cell adhesion molecules and asthma. Clin Exper Allergy 21: 128–141CrossRefGoogle Scholar
  21. 21.
    Montefort S, Lai C, Kapahi P, Leung J, Lai K, Chan H, Haskard D, Howarth P, Holgate S (1994) Circulating adhesion molecules in asthma. Am J Respir Crit Care Med 149: 1149–1152PubMedGoogle Scholar
  22. 22.
    Gosset P, Tillie-Leblond I, Janin A, Marquette C, Copin M, Wallaert B, Tonnel A (1995) Expression of E-selectin, ICAM-1 and VCAM-1 on bronchial biopsies from allergic and non-allergic asthmatic patients. Int Arch Allergy Immunol 106: 69–77PubMedCrossRefGoogle Scholar
  23. 23.
    Pilewski J, Albelda S (1995) Cell adhesion molecules in asthma: homing, activation, and airway remodeling. Am J Respir Cell Mol Biol 12: 1–3PubMedCrossRefGoogle Scholar
  24. 24.
    Bentley A, Durham S, Robinson D, Menz G, Storz C, Cromwell O, Kay A, Wardlaw A (1993) Expression of endothelial and leukocyte adhesion molecules intercellular adhesion molecule-1, E-selectin, and vascular cell adhesion molecule-1 in the bronchial mucosa in steady-state and allergen-induced asthma. J Allergy Clin Immunol 92: 857–868PubMedCrossRefGoogle Scholar
  25. 25.
    Montefort S, Gratziou C, Goulding D, Polosa R (1994) Bronchial biopsy evidence for leukocyte infiltration and upregulation of leukocyte-endothelial cell adhesion molecules 6 hours after local allergen challenge of sensitized asthmatic airways. J Clin Invest 93: 1411–1421PubMedCrossRefGoogle Scholar
  26. 26.
    Takahashi N, Liu M, Proud D, Yu X, Hasegawa S, Spannhake E (1994) Soluble intracellular adhesion molecule 1 in bronchoalveolar lavage fluid of allergic subjects following segmental antigen challenge. Am J Respir Crit Care Med 150: 704–709PubMedGoogle Scholar
  27. 27.
    Georas S, Liu M, Newman W, Beall L, Stealey B, Bochner B (1992) Altered adhesion molecule expression and endothelial cell activation accompany the recruitment of human granulocytes to the lung after segmental antigen challenge. Am J Respir Cell Mol Biol 7: 261–269PubMedGoogle Scholar
  28. 28.
    Fukuda T, Kukushima Y, Maruyama N et al (1995) Role of interleukin-4 and vascular cell adhesion molecule-1 in selective eosinophil migration into the airways in allergic asthma. Am J Respir Cell Mol Biol 14: 84–94Google Scholar
  29. 29.
    Mengelers H, Maikoe T, Hooibrink B, Kuypers T, Kreukniet J, Lammers J, Koenderman L (1993) Down modulation of L-Selectin expression on eosinophils recovered from bronchoalveolar lavage fluid after allergen provocation. Clin Exp Allergy 23: 196–204PubMedCrossRefGoogle Scholar
  30. 30.
    Robinson D, Hamid Q, Ying S, Bentley A, Assoufi B, Durham S, Kay A (1993) Prednisolone treatment in asthma is associated with modulation of bronchoalveolar lavage cell interleukin-4, interleukin-5, and interferon-gamma cytokine gene expression. Am Rev Respir Dis 148(2): 401–406PubMedGoogle Scholar
  31. 31.
    Corry D, Folkesson H, Warnock M, Erle D, Matthay M, Wiener-Kronish J, Locksley R (1996) Interleukin 4, but not interleukin 5 or eosinophils, is required in a murine model of acute airway hyperreactivity [see comments]. J Exp Med 183: 109–117PubMedCrossRefGoogle Scholar
  32. 32.
    Lee J, McGarry M, Farmer S, Denzler K, Larson K, Carrigan P, Brenneise I, Horton M, Hackzu A, Gelfand E et al (1997) Interleukin-5 expression in the lung epithelium of transgenic mice leads to pulmonary changes pathognomic of asthma. J Exp Med 185: 2143–2156PubMedCrossRefGoogle Scholar
  33. 33.
    Hogan S, Mould A, Kikutani H, Ramsay A, Foster P (1997) Aeroallergen-induced eosinophilic inflammation, lung damage, and airways hyperreactivity in mice can occur independently of IL-4 and allergen-specific immunoglobulins. J Clin Invest 99: 1329–1339PubMedCrossRefGoogle Scholar
  34. 34.
    Hogan S, Koskinen A, Matthaei K, Young I, Foster P (1998) Interleukin-5 producing CD4+ T cells play a pivotal role in aerollergen-induced eosinophilia, bronchial hyperreactivity, and lung damage in mice. Am J Respir Crit Care Med 157: 210–218PubMedGoogle Scholar
  35. 35.
    Kopf M, Brombacher F, Hodgkin P, Ramsay A, Milbourne E, Dai W, Ovington K, Behm C, Kohler G, Young I et al (1996) IL-5-deficient mice have a developmental defect in CD5+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity 4: 15–24PubMedCrossRefGoogle Scholar
  36. 36.
    Noben-Trauth N, Shultz L, Brombacher F, Urban Jr. J, Gu H, Paul W (1997) An interleukin 4 (IL-4)-independent pathway for CD4+ T cell IL-4 production is revealed in IL-4 receptor-deficient mice. Proc Natl Acad Sci 94: 10838–10843PubMedCrossRefGoogle Scholar
  37. 37.
    Humbles A, Conroy D, Marleau S, Rankm S, Palframan R, Proudfoot A, Wells T, Li D, Jeffery P, Griffiths-Johnson D et al (1997) Kinetics of eotaxin generation and its relationship to eosinophil accumulation in allergic airways disease: analysis in a guinea pig model in vivo. J Exp Med 186: 601–612PubMedCrossRefGoogle Scholar
  38. 38.
    Rothenberg M, MacLean J, Pearlman E, Luster A, Leder P (1997) Targeted disruption of the chemokine eotaxin partially reduces antigen-induced tissue eosinophilia. J Exp Med 185: 785–790PubMedCrossRefGoogle Scholar
  39. 39.
    Sallusto F, Mackay C, Lanzavecchia A (1997) Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science 277: 2005–2007PubMedCrossRefGoogle Scholar
  40. 40.
    Brusselle G, Kips J, Joos G, Bluethmann H, Pauwells P (1995) Allergen-induced airway inflammation and bronchial responsiveness in wild-type and interleukin-4-deficient mice. Am J Respir Cell Mol Biol 12: 254–259PubMedGoogle Scholar
  41. 41.
    Rankin J, Picarella D, Geba G, Temann U, Prasad B, Dicosmo B, Tarallo A, Stripp B, Whitsett J, Flavell R (1996) Phenotypic and physiologic characterisation of transgenic mice expressing interleukin 4 in the lung: Lymphocytic and eosinophilic inflammation with airway hyperreactivity. Proc Natl Acad Sci USA 93: 7821–7825PubMedCrossRefGoogle Scholar
  42. 42.
    Cohn L, Homer R, Marinov A, Rankin J, Bottomly K (1997) Induction of airways mucus production by T helper 2 (Th2) cells: A critical role for interleukin 4 in cell recruitment but not mucus production. J Exp Med 186: 1737–1747PubMedCrossRefGoogle Scholar
  43. 43.
    Mehlhop P, van de Rijn M, Goldberg A, Brewer J, Kurup V, Martin T, Oettgen H (1997) Allergen-induced bronchial hyperreactivity and eosinophilic inflammation occur in the absence of IgE in a mouse model of asthma. Proc Natl Acad Sci 94: 1344–1349PubMedCrossRefGoogle Scholar
  44. 44.
    Takeda K, Hamelmann E, Joetham A, Shultz L, Larsen G, Irvin C, Gelfand E (1997) Development of eosinophilic airway inflammation and airway responsiveness in mast cell deficient mice. J Exp Med 186: 449–454PubMedCrossRefGoogle Scholar
  45. 45.
    Zurawski G, de Vries J (1994) Interleukin 13, an interleukin 4-like cytokine that acts on monocytes and B cells, but not on T cells. Immunol Today 15: 19–26PubMedCrossRefGoogle Scholar
  46. 46.
    Punnonen J, Aversa G, Cocks B, McKenzie A, Menon S, Zurawski G, de Waal-Malefyt R, de Vries J (1993) Interleukin 13 induces interleukin 4-independent IgG4 and IgE synthesis and CD23 expression by human B cells. Proc Natl Acad Sci USA 90: 3730–3734PubMedCrossRefGoogle Scholar
  47. 47.
    Zuany-Amorim C, Haile S, Leduc D, Dumarey C, Huerre M, Vargaftig B, Pretolani M (1995) Interleukin-10 inhibits antigen-induced cellular recruitment into the airways of sensitized mice. J Clin Invest 95: 2644–2651PubMedCrossRefGoogle Scholar
  48. 48.
    Hogan S, Matthaei K, Young J, Koskinen A, Young I, Foster P (1998) A novel T-cell regulated mechanism modulating allergen-induced airways hyperreactivity in BALB/c mice independently of interleukin-4 and-5. J Immunol 161: 1501–1509PubMedGoogle Scholar
  49. 49.
    Gavett S, Chen X, Finkelman F, Wills-Karp M (1994) Depletion of murine CD4+ T lymphocytes prevents antigen-induced airway hyperreactivity and pulmonary eosinophilia. Am J Respir Cell Mol Biol 10: 587–593PubMedGoogle Scholar
  50. 50.
    De Sanctis G, Itoh A, Green F, Qin S, Kimura T, Grobholz J, Martin T, Maki T, Drazen J (1997) T-lymphocytes regulate genetically determined airway hyperresponsiveness in mice. Nat Med 3: 460–462PubMedCrossRefGoogle Scholar
  51. 51.
    Nakajima H, Samo H, Nishimura T, Yoshida S, Iwamoto I (1994) Role of vascular cell adhesion molecule 1/very late activation antigen 4 and intercellular adhesion molecule in antigen-induced eosinophil and T cell recruitment into the tissue. J Exp Med 179: 1145–1154PubMedCrossRefGoogle Scholar
  52. 52.
    Weg V, Williams T, Lobb R, Nourshargh S (1993) A monoclonal antibody recognizing very late activation antigen-4 inhibits eosinophil accumulation in vivo. J Exp Med 177: 561–566PubMedCrossRefGoogle Scholar
  53. 53.
    Pretolani M, Ruffie C, Lapa e Silva J, Joseph D, Lobb R, Vargaftig B (1994) Antibody to very late activation antigen 4 prevents antigen-induced bronchial hyperreactivity and cellular infiltration in the guinea pig airways. J Exp Med 180: 795–805PubMedCrossRefGoogle Scholar
  54. 54.
    Wegner C, Gundel R, Reilly P, Haynes N, Letts L, Rothlein R (1990) Intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of asthma. Science 247: 456–459PubMedCrossRefGoogle Scholar
  55. 55.
    Sun J, Elwood W, Haczku A, Barnes P, Hellewell P, Chung K (1994) Contribution of intercellular-adhesion molecule-1 in allergen-induced airway hyperresponsiveness and inflammation in sensitised brown-Norway rats. Int Arch Allergy Immunol 104: 291–295PubMedCrossRefGoogle Scholar
  56. 56.
    Rabb H, Olivenstein R, Issekutz T, Renzi P, Martin J (1994) The role of the leukocyte adhesion molecules VLA-4, LFA-1, and Mac-1 in allergic airway responses in the rat. Am J Respir Crit Care Med 149: 1186–1191PubMedGoogle Scholar
  57. 57.
    Abraham W, Sielczak M, Ahmed A, Cortes A, Lauredo I, Kim J, Pepinsky B, Benjamin C, Leone D, Lobb R et al (1994) Alpha 4-integrins mediate antigen-induced late bronchial responses and prolonged airway hyperresponsiveness in sheep. J Clin Invest 93: 776–787PubMedCrossRefGoogle Scholar
  58. 58.
    Van Oosterhout A, Hessel E, Van Esch B et al (1996) Modulation of IgE, eosinophil migration and airway hyperresponsiveness by antibodies to LFA-1, Mac-1 or VLA-4 in a murine model of allergic asthma. Am J Respir Crit Care Med 153: A149–A754Google Scholar
  59. 59.
    Milne A, Piper P (1994) The effects of two anti-CD18 antibodies on antigen-induced airway hyperresponsiveness and leukocyte accumulation in the guinea pig. Am J Respir Cell Mol Biol 11: 337–343PubMedGoogle Scholar
  60. 60.
    Abraham W, Sielczak M, Ahmed A, Cortes A, Lauredo I, Kim J, Pepinsky B, Benjamin C, Leone D, Lobb R, Weller P (1994) Alpha-4 intergrin mediates antigen-induced late bronchial responses and prolonged airway hyperresponsiveness in sheep. J Clin Invest 93: 776–787PubMedCrossRefGoogle Scholar
  61. 61.
    Dedhar S, Hannigan G (1996) Integrin cytoplasmic interaction and bidirectional tranmembrane signalling. Curr Opin Cell Biol 8: 657–669PubMedCrossRefGoogle Scholar
  62. 62.
    Arbones M, Ord D, Ley K, Ratech H, Maynard-Curry C, Otten G, Capon D, Tedder T (1994) Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. Immunity 1: 247–260PubMedCrossRefGoogle Scholar
  63. 63.
    Tedder T, Steeber D, Pizcueta P (1995) L-selectin-deficient mice have impaired leukocyte recruitment into inflammatory sites. J Exp Med 181: 2259–2264PubMedCrossRefGoogle Scholar
  64. 64.
    Mayadas T, Johnson R, Rayburn H, Hynes R, Wagner D (1993) Leukocyte rolling and extravasation are severely compromised in P selectin-deficient mice. Cell 74: 541–554PubMedCrossRefGoogle Scholar
  65. 65.
    Subramaniam M, Saffaripour S, Watson S, Mayadas T, Hynes R, Wagner D (1995) Reduced recruitment of inflammatory cells in a contact hypersensitivity response in P-selectin-deficient mice. J Exp Med 181: 2277–2282PubMedCrossRefGoogle Scholar
  66. 66.
    DeSanctis G, Wolyniec W, Green F, Qin S, Jiao A, Finn P, Noonan T, Jeotham A, Gelfand E, Doerschuk C et al (1997) Reduction of allergic airways responses in P-selectin-deficent mice. Am J Physiol 6: 681–687Google Scholar
  67. 67.
    Wolyniec W, DeSanctis G, Haynes N, Jaio A, Drazen J, Noonan T (1997) Intercellular adhesion molecule-1 (ICAM-1) mediates airway hyperresponsiveness in ovalbumin challenged mice. Proc Am Thoracic Soc: A876Google Scholar
  68. 68.
    Kanwar S, Bullard D, Hickey M, Smith C, Beaudet A, Wolitzky B, Kubes P (1997) The association between alpha 4-integrin, P-selectin, and E-selectin in an allergic model of inflammation. J Exp Med 185: 1077–1087PubMedCrossRefGoogle Scholar
  69. 69.
    Austrup F, Vestweber D, Borges E, Löhning M, Bräuers R, Herz U, Renz H, Hallmann R, Scheffold A, Radbruch A et al (1997) P-and E-selectin mediate recruitment of T-helper-1 but not T-helper-2-cells into inflamed tissues. Nature 385: 81–83PubMedCrossRefGoogle Scholar
  70. 70.
    Woronicz J, Goa X, Cao Z, Rothe M, Goeddel D (1997) IκB Kinase-β: NF-κB activation and complex formation with IκB kinase-α and NIK. Science 866-869Google Scholar
  71. 71.
    Ihle J (1995) Cytokine receptor signalling. Nature 377: 591–594PubMedCrossRefGoogle Scholar
  72. 72.
    Takeda K, Tanaka T, Shi W, Matsumoto M, Minami M, Kashiwamura S, Nakanishi K, Yoshida N, Kishimoto T, Akira S (1996) Essential role for STAT-6 in IL-4 signalling. Nature 380: 627–631PubMedCrossRefGoogle Scholar
  73. 73.
    Callard R, Matthews D, Hibbert L (1996) IL-4 and IL-13 receptors: are they one and the same? Immunol Today 17: 108–110PubMedCrossRefGoogle Scholar
  74. 74.
    Laudanna C, Campbell J, Butcher E (1996) Role of Rho in chemoattractant-activated leukocyte adhesion through integrins. Science 271: 981–983PubMedCrossRefGoogle Scholar
  75. 75.
    Coppolino M, Woodside M, Demaurex N, Grinstein S, St-Arnuad R, Dedhar S (1997) Calreticulin is essential for integrin-mediated calcium signalling and cell adhesion. Nature 386: 843–846PubMedCrossRefGoogle Scholar
  76. 76.
    Baggiolini M, Moser B (1997) Blocking chemokine receptors. J Exp Med 186: 1189–1191PubMedCrossRefGoogle Scholar
  77. 77.
    Gong J, Ratkey K, Waterfield J, Clarklewis I (1997) An antagonist of monocyte chemoattractant protein 1 (MCP-1) inhibits arthritis in the MRL-lpr mouse model. J Exp Med 186: 131–137PubMedCrossRefGoogle Scholar
  78. 78.
    Vonderheide R, Tedder T, Springer T, Staunton D (1994) Residues within a conserved amino acid motif of domains 1. and 4 of VCAM-1 are required for binding to VLA-4. J Cell Biol 125: 215–222PubMedCrossRefGoogle Scholar
  79. 79.
    Osborn L, Vassallo C, Browning B, Tizard R, Haskard D, Benjamin C, Dougas I, Kirchhausen T (1994) Arrangement of domains, and amino acid residues required for binding of vascular cell adhesion molecule-1 to its counter-receptor VLA-4 (alpha 4 beta 1). J Cell Biol 124: 601–608PubMedCrossRefGoogle Scholar
  80. 80.
    Komoriya A, Green L, Mervic M, Yamada S, Yamada K, Humphries M (1991) The minimal essential sequence for a major cell type-specific adhesion site (CS1) within the alternatively spliced type III connecting segment domain of fibronectin is leucine-aspartic acid-valine. J Biol Chem 266: 15075–15079PubMedGoogle Scholar
  81. 81.
    Vanderslice P, Ren K, Revelle J, Kim D, Scott D, Bjercke R, Yeh E, Beck P, Kogan T (1997) A cyclic hexapeptide is a potent antagonist of alpha 4 integrins. J Immunol 158: 1710–1718PubMedGoogle Scholar
  82. 82.
    McIntyre B, Woodside D, Caruso D, Wooten D, Simon S, Neelamegham S. Revelle J, Vanderslice P (1997) Regulation of human T lymphocyte coactivation with an alpha 4 integrin antagonist peptide. J Immunol 158: 4180–4186PubMedGoogle Scholar
  83. 83.
    Ra C, Yasuda M, Yagita H, Okumura K (1994) Fibronectin receptor integrins are involved in mast cell activation. J Allergy Clin Immunol 94: 625–628PubMedCrossRefGoogle Scholar
  84. 84.
    Abraham W, Ahmed A, Sielczak M, Narita M, Arrhenius T, Elices M (1997) Blockade of late-phase airway responses and airway hyperresponsiveness in allergic sheep with a small-molecule peptide inhibitor of VLA-4. Am J Respir Crit Care Med 156: 696–703PubMedGoogle Scholar
  85. 85.
    Abraham W, Ahmed A, Cortes A, Sielczak M (1996) Effect of TYB-2285 on antigen-induced airway responses in sheep. Pharmacol 9: 49–58Google Scholar
  86. 86.
    McKinnon M, Page K, Uings I, Banks M, Fattah D, Proudfoot A, Graber P, Arod C, Fish R et al (1997) Interleukin 5 mutant distinguishes between two functional responses in human eosinophilis. J Exp Med 186: 121–129PubMedCrossRefGoogle Scholar
  87. 87.
    Dickason R, Huston D (1996) Creation of a biologically active interleukin-5 monomer. Nature 379: 652–655PubMedCrossRefGoogle Scholar
  88. 88.
    Finkelman F, Katona I, Mosmann T, Coffman R (1988) IFN-gamma regulates the isotypes of Ig secreted during in vivo humoral immune responses. J Immunol 140: 1022–1027PubMedGoogle Scholar
  89. 89.
    Parronchi P, De Carli M, Manetti R, Simonelli C, Sampognaro S, Piccinni M, Macchia D, Maggi E, Del-Prete G, Romagnani S (1992) IL-4 and IFN (alpha and gamma) exert opposite regulatory effects on the development of cytolytic potential by Th1 or Th2 human T cell clones. J Immunol 149: 2977–2983PubMedGoogle Scholar
  90. 90.
    Gavett S, O’Hearn D, Li X, Huang S, Finkelman F, Wills-Karp M (1995) Interleukin-12 inhibits antigen-induced airway hyperresponsiveness, inflammation, and Th2 cytokine expression in mice. J Exp Med 182: 1527–1536PubMedCrossRefGoogle Scholar
  91. 91.
    Kips J, Brusselle G, Joos G, Peleman R, Tavernier J, Devos R, Pauwels R (1996) Interleukin-12 inhibits antigen-induced airway hyperresponsiveness in mice. Am J Respir Crit Care Med 153(2): 535–539PubMedGoogle Scholar
  92. 92.
    Nakajima H, Nakao A, Watanabe Y, Yoshida S, Iwamoto I (1994) IFN-alpha inhibits antigen-induced eosinophil and CD4+ T cell recruitment into tissue. J Immunol 153: 1264–1270PubMedGoogle Scholar
  93. 93.
    Hogan S, Foster P, Tan X, Ramsay A (1998) Mucosal interleukin-12 gene delivery inhibits allergic airways disease and restores local antiviral immunity. Eur J Immunol 28: 413–423PubMedCrossRefGoogle Scholar
  94. 94.
    Albelda S, Smith C, Ward P (1994) Adhesion molecules and inflammatory injury. FASEB J 8: 504–512PubMedGoogle Scholar

Copyright information

© Springer Basel AG 1999

Authors and Affiliations

  • Paul S. Foster
    • 1
  • Simon P. Hogan
    • 1
  1. 1.Division of Biochemistry and Molecular Biology, John Curtin School of Medical ResearchAustralian National UniversityActon ACTAustralia

Personalised recommendations