Skip to main content

Group size, productivity, and information flow in social wasps

  • Chapter

Summary

Social wasp species segregate into two behavioral groups: independent founders, in which queens found new colonies independent of workers, and swarm founders, in which new colonies are founded by swarms comprising several queens accompanied by many workers. Recent work on Polybia occidentalis, a swarm founder, indicates that productivity (measured as nest size and grams of brood reared) per adult per day increases with founding swarm size. I consider four mechanisms than can account for this pattern, and adduce *evidence supporting two of them. First, large colonies appear to allocate a larger proportion of their worker population to foraging for resources. Second, foragers in large colonies transfer their materials to nest workers more efficiently than in small colonies. I suggest that differences in the stochastic properties of small versus large groups lead to shorter queuing delays and a greater ability of large colonies to keep the size of interacting worker groups in balance in the face of perturbations and changing conditions. Finally, I argue that the mode of social organization seen in the swarm founders works most efficiently for large groups, while the simpler organization of independent founders works most efficiently for very small groups.

Keywords

  • Colony Size
  • Social Insect
  • Large Coloni
  • Small Coloni
  • Social Wasp

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-0348-8739-7_1
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-0348-8739-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wilson EO (1971) The insect societies. Harvard University Press, Cambridge, MA

    Google Scholar 

  2. Raignier A, van Boven JKA (1955) Etude taxonomique, biologique et biométrique des Dorylus du sous-genre Anomma (Hymenoptera Formicidae). Ann Mus R Congo Belg 2: 1–359

    Google Scholar 

  3. Jeanne RL (1980) Evolution of social behavior in the Vespidae. Anna Rev Entomol 25: 371–396

    CrossRef  Google Scholar 

  4. Jeanne RL (1991) The swarm-founding Polistinae. In: KG Ross, RW Matthews (eds): The social behavior of wasps. Cornell University Press, Ithaca, New York, 191–231

    Google Scholar 

  5. Carpenter JM (1991) Phylogenetic relationships and the origin of social behavior in the Vespidae. In: KG Ross, RW Matthews (eds): The social behavior of wasps, Cornell University Press, Ithaca, New York, 7–32

    Google Scholar 

  6. Wenzel JW, Carpenter JM (1994) Comparing methods: adaptive traits and tests of adaptation. In: P Eggleton, R Vane-Wright (eds): Phylogenetics and ecology. Linnean Society London, 79–101

    Google Scholar 

  7. Gadagkar R (1991) Belonogaster, Mischocyttarus, Parapolybia and independent-founding Ropalidia. In: KG Ross, RW Matthews (eds): The social behavior of wasps. Cornell University Press, Ithaca, New York, 149–190

    Google Scholar 

  8. Jeanne RL (1972) Social biology of the Neotropical wasp Mischocyttarus drew-seni. Bull Mus Comp Zool 144: 63–150

    Google Scholar 

  9. Keeping MG (1989) Social biology and colony dynamics of the polistine wasp Belonogaster petiolata (Hymenoptera: Vespidae). PhD dissertation, University of the Witwatersrand

    Google Scholar 

  10. Pardi L, Marino Piccioli MT (1970) Studisulla biologia di Belonogaster (Hymenoptera, Vespidae) 2. Differenziamento castale incipiente in B. griseus (Fab.). Monit Zool Ital NS 3, 11: 235–265

    Google Scholar 

  11. Pickering J (1980) Sex ratio, social behavior and ecology in Polistes (Hymenoptera, Vespidae), Pachysomoides (Hymenoptera, Ichneumonidae) and Plasmodium (Protozoa, Haemosporidia). PhD dissertation, Harvard University

    Google Scholar 

  12. Rau P (1933) The jungle bees and wasps of Barro Colorado Island (with notes on other insects). Phil Rau, Kirkwood, MI

    Google Scholar 

  13. Richards OW, Richards MJ (1951) Observation on the social wasps of South America (Hymenoptera Vespidae). Trans R Entomol Soc Lond 102: 1–170

    CrossRef  Google Scholar 

  14. Richards OW (1978) The social wasps of the Americas, excluding the Vespinae. British Museum (Natural History), London

    Google Scholar 

  15. Rodrigues VM (1968) Estudo sôbre as vespas sociais do Brasil (Hymenoptera-Vespidae). PhD dissertation, Universidade de Campinas, Brazil

    Google Scholar 

  16. Snelling RR (1953) Notes on the hibernation and nesting of the wasp Mischocyttarus flavitarsis (de Saussure). J Kans Entomol Soc 26: 143–145

    Google Scholar 

  17. Wenzel JW (1987) Ropalidia formosa, a nearly solitary paper wasp from Madagascar (Hymenoptera: Vespidae). J Kans Ent Soc 60: 549–556

    Google Scholar 

  18. Wenzel JW (1992) Extreme queen-worker dimorphism in Ropalidia ignobilis, a small-colony wasp (Hymenoptera: Vespidae). Insect Soc 39: 31–43

    CrossRef  Google Scholar 

  19. Yamane S (1972) Life cycle and nest architecture of Polistes wasps in the Okushiri Island, northern Japan (Hymenoptera, Vespidae). J Fac Sci, Hokkaido Univ, ser 6, Zool 18: 440–459

    Google Scholar 

  20. Yamane S (1980) Social biology of the Parapolybia wasps in Taiwan. PhD dissertation, Hokkaido University

    Google Scholar 

  21. Pardi L (1948) Dominance order in Polistes wasps. Physiol Zool 21: 1–13

    PubMed  CAS  Google Scholar 

  22. Reeve HK (1991) Polistes. In: KG Ross, RW Matthews (eds): The social behavior of wasps. Cornell University Press, Ithaca, New York, 99–148

    Google Scholar 

  23. Röseler P-F (1991) Reproductive competition during colony establishment. In: KG Ross, RW Matthews (eds): The social behavior of wasps. Cornell University Press, Ithaca, New York, 309–335

    Google Scholar 

  24. West-Eberhard MJ (1977) The establishment of reproductive dominance in social wasp colonies. Proc 8th Int Cong Int Union Study Soc Insects, 223-227

    Google Scholar 

  25. West-Eberhard MJ (1978) Temporary queens in Metapolybia wasps: nonrepro-ductive helpers without altruism? Science 200: 441–443

    PubMed  CrossRef  CAS  Google Scholar 

  26. Forsyth AB (1975) Usurpation and dominance behavior in the polygynous social wasp Metapolybia cingulata (Hymenoptera: Vespidae: Polybiini). Psyche 82: 299–303

    CrossRef  Google Scholar 

  27. Wilson EO (1990) Success and dominance in ecosystems: The case of the social insects. Ecology Institute, Oldendorf/Luhe, Germany

    Google Scholar 

  28. Forsyth AB (1978) Studies on the behavioral ecology of polygynous social wasps. PhD dissertation, Harvard University

    Google Scholar 

  29. Queller DC, Negrón-Sotomayor JA, Strassmann JE, Hughes CR (1991) Queen number and genetic relatedness in a neotropical wasp, Polybia occidentalis. Behav Ecol 4: 7–13

    CrossRef  Google Scholar 

  30. Jeanne RL, Downing HA, Post DC (1988) Age polyethism and individual variation in Polybia occidentalis, an advanced eusocial wasp. In: RL Jeanne (ed): Interindividual behavioral variability in social insects. Westview Press, Boulder, CO, 323–357

    Google Scholar 

  31. Jeanne R. L, Williams NM, Yandell BS (1992) Age polyethism and defense in a tropical social wasp. J Insect Behav 5: 211–227

    CrossRef  Google Scholar 

  32. Jeanne RL (1986b) The evolution of the organization of work in social insects. Monit Zool Ital NS 20: 119–133

    Google Scholar 

  33. Jeanne RL (1991) Polyethism. In: KG Ross, RW Matthews (eds): The social behavior of wasps. Cornell University Press, Ithaca, New York, 389–425

    Google Scholar 

  34. Hunt JH, Jeanne RL, Baker I, Grogan DE (1987) Nutrient dynamics of a swarm-founding social wasp species, Polybia occidentalis (Hymenoptera: Vespidae). Ethology 75: 291–305

    CrossRef  Google Scholar 

  35. O’Donnell S, Jeanne RL (1990) Forager specialization and the control of nest repair in Polybia occidentalis Olivier (Hymenoptera: Vespidae). Behav Ecol Sociobiol 27: 359–364

    CrossRef  Google Scholar 

  36. O’Donnell S, Jeanne RL (1995) Worker lipid stores decrease with outside-nest task performance in wasps: implications for the evolution of age polyethism. Experientia 51: 749–752

    CrossRef  Google Scholar 

  37. Jeanne RL, Nordheim EV (1996) Productivity in a social wasp: per capita output increases with swarm size. Behav Ecol 7: 43–48

    CrossRef  Google Scholar 

  38. Michener CD (1964) Reproductive efficiency in relation to colony size in hymenopterous societies. Insect Soc 11: 317–341

    CrossRef  Google Scholar 

  39. Jeanne RL (1986) The organization of work in Polybia occidentalis: the costs and benefits of specialization in a social wasp. Behav Ecol Sociobiol 19: 333–341

    CrossRef  Google Scholar 

  40. Oster GF, Wilson EO (1978) Caste and ecology in the social insects. Princeton University Press, Princeton, NJ

    Google Scholar 

  41. Anderson C, Ratnieks FLW (1999) Effect of colony size on the efficiency of task partitioning in insect societies. In: JM Pasteels, JL Deneubourg, C Detrain (eds): Information processing in social insects. Birkhäuser, Basel

    Google Scholar 

  42. Jeanne RL (1987) JL Deneubourg (eds): From individual to collective behavior in social insects. Birkhäuser, Basel, 241–251

    Google Scholar 

  43. Jeanne RL (1996) Regulation of nest construction behaviour in Polybia occidentalis. Anim Behav 52: 473–488

    CrossRef  Google Scholar 

  44. Seeley TD, Tovey CA (1994) Why search time to find a food-storer bee accurately indicates the relative rates of nectar collecting and nectar processing in honey bee colonies. Anim Behav 47: 311–315

    CrossRef  Google Scholar 

  45. Bonabeau E, Theraulaz G, Deneubourg JL, Aron S, Camazine S (1997) Self-organization in social insects. Trends Ecol Evol 12: 188–193

    PubMed  CrossRef  CAS  Google Scholar 

  46. Wenzel JW, Pickering J (1991) Cooperative foraging, productivity, and the central limit theorem. Proc Natl Acad Sci USA 88: 36–38

    PubMed  CrossRef  CAS  Google Scholar 

  47. Green DM, Swets JA (1966) Signal detection theory and psychophysics. Wiley, New York

    Google Scholar 

  48. Freund JE (1971) Mathematical statistics, 2nd edn. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  49. Zucchi R, Sakagami SF, Noll FB, Mechi MR, Mateus S, Baio MV, Shima SN (1995) Agelaia vicina, a swarm-founding polistine with the largest colony size among wasps and bees (Hymenoptera: Vespidae). J New York Entomol S 103: 129–137

    Google Scholar 

  50. Post DC, Jeanne RL, Erickson EH Jr (1988) Variation in behavior among workers of the primitively social wasp Polistes fuscatus variatus. In: RL Jeanne (ed): Interindividual behavioral variability in social insects. Westview Press, Boulder, CO, 283–321

    Google Scholar 

  51. Reeve HK, Gamboa GJ (1983) Colony activity integration in primitively eusocial wasps: the role of the queen (Polistes fuscatus, Hymenoptera: Vespidae). Behav Ecol Sociobiol 13: 63–74

    CrossRef  Google Scholar 

  52. O’Donnell S (1998) Effects of experimental forager removals on division of labour in the primitively eusocial wasp Polistes instabilis (Hymenoptera: Vespidae). Behaviour 135: 173–193

    CrossRef  Google Scholar 

  53. Seeley TD (1989) Social foraging in honey bees: how nectar foragers assess their colony’s nutritional status. Behav Ecol Sociobiol 24: 181–199

    CrossRef  Google Scholar 

  54. Seeley TD (1989) The honey bee colony as a superorganism. Amer Sci 77: 546–553

    Google Scholar 

  55. Ito Y (1979) Colony development and social structure in a subtropical paper wasp, Ropalidia fasdata (F.) (Hymenoptera: Vespidae). Res Pop Ecol 27: 333–349

    CrossRef  Google Scholar 

  56. Litte M (1981) Social biology of the polist-ine wasp Mischocyttarus labiatus: survival in a Colombian rain forest. Smithson Contr Zool 327: 1–27

    CrossRef  Google Scholar 

  57. West-Eberhard MJ (1969) The social biology of polistine wasps. Misc Publ Mus Zool Univ Mich 140: 1–101

    Google Scholar 

  58. Suzuki T (1981) Flesh intake and production of offspring in colonies of Polistes chinensis antennalis (Hymenoptera, Vespidae) II. Flesh intake and production of reproductives. Kontyû 49: 283–301

    Google Scholar 

  59. Seeley TD (1982) Adaptive significance of the age polyethism schedule in honeybee colonies. Behav Ecol Sociobiol 11: 287–293

    CrossRef  Google Scholar 

  60. O’Donnell S, Jeanne RL (1992) Forager success increases with experience in Polybia occidentalis (Hymenoptera: Vespidae). Insect Soc 39: 451–454

    CrossRef  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Jeanne, R.L. (1999). Group size, productivity, and information flow in social wasps. In: Detrain, C., Deneubourg, J.L., Pasteels, J.M. (eds) Information Processing in Social Insects. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8739-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8739-7_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9751-8

  • Online ISBN: 978-3-0348-8739-7

  • eBook Packages: Springer Book Archive