Bimodule and Matrix Problems

  • Serge Ovsienko
Conference paper
Part of the Progress in Mathematics book series (PM, volume 173)


This talk is devoted to an approach to the representat on theory over an algebraically closed field k. I call it constructive representation theory and the main technical feature here is that instead of working with a category of representations we are working with an object, “presententing” (in a sense explained below) this category. This object often allows combinatorial description, therefore a such approach produces many combinatorial algorithms, which are both of a theoretical value and can be realized in form of computer programs as well.1


Quadratic Form Associative Algebra Representation Category Springer Lecture Note Matrix Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Auslander, S. Smalø: Preprojective modules over artin algebras, J. of Alg. 66 (1980), 61–122zbMATHCrossRefGoogle Scholar
  2. [2]
    R. Bautista, P. Gabriel, A. V. Roiter, L. Salmeron: Representation-finite algebras and multiplicative bases, Invent.Math. 81 (1985), 217–285MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    I. N. Bernstein, I. M. Gelfand, V. A. Ponomarev: Coxeter functors and Gabriel’s Theorem, Uspechi Mat. Nauk 28 2 (1973), 19–34MathSciNetzbMATHGoogle Scholar
  4. [4]
    V. M. Bondarenko, N. S. Golovachtchuk, S. A. Ovsienko, A. V. Roiter: Schurian matrix problems, in: ‘Schurian Matrix Problems and Quadratic Forms’, Preprint 78.25, IM AN UkSSR, Kiev, (1978), 18–48.Google Scholar
  5. [5]
    K. Bongartz: Treue einfach zusammenhängende Algebraen I,Comment Math, Hely. 57, (1982), 282–330.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    K. Bongartz: A criterion of finite representation type, Math. Ann. 269 (1984), 1–12MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    S. Brenner: Quivers with commutativity conditions and some phenomenology of forms, in: V. Dlab, P. Gabriel (ed.) “Representations of Algebras”, Springer Lecture Notes in Math., 488 (1975), 29–53.CrossRefGoogle Scholar
  8. [8]
    S. Brenner, M. C. R. Butler: Generalization of the Bernstein-Gelfand-Ponomarev reflection functors, Springer Lecture Notes in Math., 832 (1980), 103–169.MathSciNetCrossRefGoogle Scholar
  9. [9]
    W. L. Burt, M. C. R. Butler: Almost split sequences for Bocses,preprint 1990.Google Scholar
  10. [10]
    W. Crawley-Boevey: On tame algebras and BOCS’s,Proc. London Math. Soc. 56 (1988), 451–483MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    W. Crawley Boevey: Matrix problems and Drozd’s Theorem,Banach Center publ. 26 p. 1, (1990), 199–222Google Scholar
  12. [12]
    J. Dixmier: Algébres enveloppantes, Gauthier-Villarrd, Paris, 1974.zbMATHGoogle Scholar
  13. [13]
    P. Dräxler: Aufrichtige gerichtete Ausnahmealgebraen,Bayreuther Math. Schriften 29 (1989).Google Scholar
  14. [14]
    P. Dräxler: Sur les algébres exceptionalles de Bongartz, C.R.Acad.Sci.Paris, t.311 Sér. I, (1990), 495–498.Google Scholar
  15. [15]
    P. Dräxler, Yu. A. Drozd, N. S. Golovachtchuk, S. A. Ovsienko and M. V. Zeldich: Towards the classification of sincere weakly positive unit forms, Europ. J. Combinatorics 16 (1995), 1–16.zbMATHCrossRefGoogle Scholar
  16. [16]
    Yu. A. Drozd: Matrix problems and categories of matrices, Zapiski Nauch. Semin. LOMI 28 (1972), 144–152MathSciNetGoogle Scholar
  17. [17]
    Yu. A. Drozd: Coxeter transformations and representations of partially ordered sets, Funk. Anal. Prilozh. 8, No.4 (1974), 34–42MathSciNetGoogle Scholar
  18. [18]
    Yu. A. Drozd: On tame and wild matrix problems, in: “Matrix Problems”, Kiev, (1977), 104–114Google Scholar
  19. [19]
    Yu. A. Drozd: Tame and wild matrix problems,in: “Representations and Quadratic Forms”, Kiev, (1979), 39–74 (AMS Translations 128,).Google Scholar
  20. [20]
    Yu. A. Drozd: On representation of Lie algebra sl(2), Visnik Kiev. Univ. Ser. Mat. Mekh. 25,. (1983), 70–77.MathSciNetGoogle Scholar
  21. [21]
    Yu. A. Drozd: Matrix problems, small reductions and representations of a class of mixed Lie groups, in: “Representations of algebras and related topics”, Cambridge Univ. Press, (1992), 225–249.Google Scholar
  22. [22]
    Yu. A. Drozd: Representations of bisected posets and Reflection Functors, Preprint 96 062, SFB 343, Bielefeld, (1996)Google Scholar
  23. [23]
    Yu. A. Drozd, S. A. Ovsienko: Coverings of tame boxes, to appear.Google Scholar
  24. [24]
    Yu. A. Drozd, S. A. Ovsienko, B. Yu. Furchin: Categorical constructions in representations theory, in: `Algebraic Structures and Their Applications’, Kiev State Univ., Kiev, (1984).Google Scholar
  25. [25]
    Yu. A. Drozd, V. M. Futorny, S. A. Ovsienko: Harish—Chandra subalgebras and Gelfand-Zetlin modules, in: `Finitedimensional algebras and related topics’, NATO ASI Ser. C:, Math. and Phys. Sci. 424, (1994), 79–93.Google Scholar
  26. [26]
    Yu. A. Drozd, B. L. Guzner, S. A. Ovsienko: Weight modules over generalized Weyl algebras, J. of Alg. 184, (1994), 491–504.MathSciNetCrossRefGoogle Scholar
  27. [27]
    P. Gabriel: Unzerlegbare Darstellungen, Manuscr. Math. 6, (1972), 71–103.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    P. Gabriel: Indecomposable representations II, Symp. Math. 11, (1973), 81–104.MathSciNetGoogle Scholar
  29. [29]
    P. Gabriel and A. V. Roiter: Representations of finite-dimensional algebras, Algebra VIII, Encyclopaedia of Math.Sc., Vol.73., Springer (1992).Google Scholar
  30. [30]
    P. Gabriel and M. Zisman: Calculus of fractions and homotopy theory, in: “Ergebnisse der Math. and ihrer Grenzgebiete” 35, Springer (1967)Google Scholar
  31. [31]
    N. S. Golovachtchuk, S. A. Ovsienko: Covering of bimodule problems, to appear.Google Scholar
  32. [32]
    N. S. Golovachtchuk, S. A. Ovsienko, A. V. Roiter: On the shurian DGC, in: “Matrix problems”, IM AN UkrSSR, Kiev, (1977), 162–165.Google Scholar
  33. [33]
    D. Happel: On derived category of a finite-dimensional algebra, Comment. Math. Hely. 62, (1987), 339–389MathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    V. Kac: Root systems, representations of quivers and invariant theory, in: “Invariant Theory”, Springer Lecture Notes in Math. 996 (1983), 74–108Google Scholar
  35. [35]
    T. V. Kadeishvili: On the homology theory of fibre spaces, Uspechi Math. Nauk 35 6, (1980), 183–188.MathSciNetGoogle Scholar
  36. [36]
    B. Keller, D. Vossieck: Sous les catégories dérivées,Comp.-Rend. Acad. Sc. Paris, Sér. I 305 (1987), 225–228.MathSciNetzbMATHGoogle Scholar
  37. [37]
    M. M. Kleiner, A. V. Roiter: Representations of differential graded categories,Springer Lecture Notes in Math. 488 (1975), 316–339.MathSciNetCrossRefGoogle Scholar
  38. [38]
    S. MacLane: Homology, Springer, 1963zbMATHCrossRefGoogle Scholar
  39. [39]
    S. A. Ovsienko: Representations of quivers with relations, in: “Matrix Problems”, Kiev, (1977), 88–103.Google Scholar
  40. [40]
    S. A. Ovsienko: On derived categories of representations categories, in: “XVIII Allunion algebraic conference”, Proceedings, part II, Kishinev, (1985), 71.Google Scholar
  41. [41]
    S. A. Ovsienko: On connection between the representations categories, Proc. of Novosibirsk Int. Alg. Conf., II, (1989)Google Scholar
  42. [42]
    S. A. Ovsienko: Generic representations of free bocses, Preprint 93 010, SFB 343, Bielefeld, (1993)Google Scholar
  43. [43]
    S. A. Ovsienko, A. V. Roiter: Bilinear forms and categories of representations, in: “Matrix Problems”, Kiev, (1977), 71–80.Google Scholar
  44. [44]
    C. M. Ringel: Tame Algebras and Integral Quadratic Forms, Springer Lecture Notes in Math. 1099 (1984)Google Scholar
  45. [45]
    A. V. Roiter: Matrix problems and representations of bisystems, Zapiski Nauch. Semin. LOMI 28 (1972)Google Scholar
  46. [46]
    A. V. Roiter: Matrix problems and representations of BOCS’s, In: “Representation theory I”, Proc. Conf. Ottawa 1979, V.Dlab and P.Gabriel (eds.), Springer Lecture Notes in Math. 831 (1980), 288–324.CrossRefGoogle Scholar
  47. [47]
    A. V. Roiter, V. V. Sergejchuk: Existence of a multiplicative basis for a finitely spaced module over an aggregate, Ukr. Math. J. 46 6, (1994), 567–579.zbMATHGoogle Scholar
  48. [48]
    W. A. Smirnov: Homology of fibre spaces, Uspechi Math.Nauk 35 6, (1980), 277–280.Google Scholar
  49. [49]
    J. L. Verdier: Catégories dérivées, état 0, Springer Lecture Notes in Math. 569 (1977), 262–311.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1999

Authors and Affiliations

  • Serge Ovsienko

There are no affiliations available

Personalised recommendations