Skip to main content

Inf-Convolution and Radial Basis Functions

  • Conference paper
New Developments in Approximation Theory

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 132))

  • 337 Accesses

Abstract

In this paper, we show how it is possible to use the ideas of Inf-convolution, coming from convex optimisation, to the definition of new reproducing kernels and the explanation of some experimental constatations in the practical use of Radial Basis Functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arcangeli, R., Etudes de problèmes de type elliptique ou parabolique avec conditions ponctuelles, Thèse d’état, Université de Toulouse, 1974.

    Google Scholar 

  2. Bouhamidi, A., Interpolation et approximation par des fonctions splines radiales, Ph.D. Dissertation, University of Nantes, 1992.

    Google Scholar 

  3. Bouhamidi, A. and A. Le Méhauté, Multivariate Interpolating (m,l, s)-spline, to appear, 1998.

    Google Scholar 

  4. Buhmann, M.D., Radial functions on Compact Support, Proc. Edinburgh Math. Soc. 41 (1998),33–46.

    Article  MATH  MathSciNet  Google Scholar 

  5. Carlson, R. and T. Foley, The parameter r 2 in multiquadrics interpolation, Computers Math. Applic. 21 (1991), 29–42

    Article  MATH  MathSciNet  Google Scholar 

  6. Derrien F., Distributions de type positif conditionnel et fonctions splines, Ph.D. Dissertation, University of Nantes, 1997.

    Google Scholar 

  7. Duchon, J., Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces, RAIRO Anal. Num. 10 (1976), 5–12.

    MathSciNet  Google Scholar 

  8. Duchon, J., Splines minimizing rotation invariant semi-norms in Sobolev spaces, Constructive Theory of functions if several variables, Oberwolfach 1975, W. Schempp and K.Zeller, Lecture Notes in Math 571, Springer Verlag, 1977, 85–100.

    Google Scholar 

  9. Dyn, N., D.Levin and S.Rippa, Numerical procedures for global surfaces fitting of scattered data by radial functions, SIAM J. Sci. Stat. Comp. 7 (1986).

    Google Scholar 

  10. Hardy, R.L., Multiquadric equations of topographic and other irregular surfaces, J. Geophys. Res. 76 (1971), 1905–1915.

    Article  Google Scholar 

  11. Kansa,E., A strictly conservative spatial approximation scheme for the governingengineering and physics equations over irregular regions and inhomogeneous scattered nodes, UCRI 101634, Lawrence Livermore National Laboratory (1989).

    Google Scholar 

  12. Laurent, P.J. Approximation et Optimisation, Hermann, Paris, 1972.

    MATH  Google Scholar 

  13. Laurent,P.J., Inf-convolution splines pour l’approximation de données discontinues, Conf. Int. Workshop for the Approximation of functions, Haifa, 1980.

    Google Scholar 

  14. Laurent, P.J., Quadratic Convex Analysis and Splines, Proceed. Bombay Conference, ISNM 76 Birkauser Verlag, (1986),17-43.

    Google Scholar 

  15. Laurent, P.J., Inf-convolution splines, Constr. Approx. (1991), 469-484.

    Google Scholar 

  16. Le Méhauté, A. and A. Bouhamidi, Splines in Approximation and Differential Operators: (m,l,s) Interpolating Splines, CRM Proceedings and Lecture Notes, 17 (1998), 67–77.

    Google Scholar 

  17. Madych, W.R. and S.A. Nelson, Multivariate interpolation and conditionnally positive definite functions, J. of Approx. Theory and its Applications 4 (1988), 77–89.

    MATH  MathSciNet  Google Scholar 

  18. Misiewicz, J.K. and D.S.P. Richards, Positivity of integrals of Bessel functions, SIAM J. Math. Anal. 25 (1994), 596–601.

    Article  MATH  MathSciNet  Google Scholar 

  19. Schaback, R. and H. Wendland, Special cases of compactly supported radial basis functions, University of Göttingen, 1994, preprint.

    Google Scholar 

  20. Wahba, G., Partial splines and interactions splines for the semi-parametric estimation of functions of several variables, Computer Sciences and Stat. (1986)

    Google Scholar 

  21. Wendland, H., Piecewise polynomial, positive definite and compactly supported radial basis functions of minimal degree, University of Göttingen, 1995, preprint.

    Google Scholar 

  22. Wu, Z., Multivariate compactly supported positive definite radial functions, Adv. Comp. Math. 4 (1995), 283–292.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this paper

Cite this paper

Le Méhauté, A. (1999). Inf-Convolution and Radial Basis Functions. In: Müller, M.W., Buhmann, M.D., Mache, D.H., Felten, M. (eds) New Developments in Approximation Theory. ISNM International Series of Numerical Mathematics, vol 132. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8696-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8696-3_7

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9733-4

  • Online ISBN: 978-3-0348-8696-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics