Skip to main content

Uniform Stability of Nonlinear Thermoelastic Plates with Free Boundary Conditions

  • Conference paper
Optimal Control of Partial Differential Equations

Abstract

In this work, we derive stability properties for a nonlinear thermoelastic plate system in which the higher order “free” boundary conditions are enforced on the displacement of the plate. The class of nonlinearities under consideration here include those seen in classical models in mechanics; such as von Kármán systems, the quasilinear Berger’s equation which models extensible plates, and Euler-Bernoulli semilinear plates. This paper focuses on the case that rotational inertia is unaccounted for in the model, which corresponds to the absence of the parameter γ (i.e., γ = 0). In this case, we show that for initial data in the basic space of well-posedness, solutions of the PDE system decay to zero uniformly as time gets large. In our proof of uniform decay for γ = 0, absolutely critical use is made of the recently discovered fact that the linearization of the thermoelastic model generates an analytic semigroup.

Research supported in part by the National Science Foundation Grant No. DMS-9710981.

Research supported in part by the National Science Foundation Grant No. DMS-9504822, and by the Army Research Office Grant DAAH04-96-1-0059.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. P. Aubin, Un théorème de compacité, C. R. Acad. Sci. 256 (1963), pp. 5042–5044.

    MathSciNet  MATH  Google Scholar 

  2. G. Avalos, Well-posedness and decay of nonlinear thermoelastic systems, preprint, 1999.

    Google Scholar 

  3. G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system with free boundary conditions without mechanical dissipation, SIAM Journal of Mathematical Analysis, Vol. 29, No. 1 (January 1998), pp. 155–182.

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system without mechanical dissipation, Rendiconti Di Istituto Di Matematica Dell’Università di Trieste, Suppl. Vol. XXVIII (1997), pp. 1–28.

    Google Scholar 

  5. G. Avalos and I. Lasiecka, Uniform decays in nonlinear thermoelastic systems, Optimal Control: Theory, Algorithms and Applications, W. W. Hagar and P. M. Pardalos (Editors), Kluwer Academic Publishers, Boston (1998), pp. 1–23.

    Google Scholar 

  6. A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and control of infinite dimensional systems Volumes I and II, Birkhäuser, Boston, 1992.

    Google Scholar 

  7. H. M. Berger, A new approach to the analysis of large deflection of plates, J. Appl. Mech. Trans ASME 22 (1955), pp. 465–472.

    MATH  Google Scholar 

  8. E. Bisognin, V. Bisognin, P. Menzala and E. Zuazua, On the exponential stability for von Kármán equation in the presence of thermal effects, to appear in Mathematical Models and Methods in the Applied Sciences.

    Google Scholar 

  9. S.K. Chang and R. Triggiani, Spectral Analysis of thermo-elastic plates with rotational forces, Optimal Control: Theory, Algorithms and Applications, W. W. Hager and P. Pardalos (Editors), Kluwer Academic Publishers, Boston (1998), pp. 84–113.

    Google Scholar 

  10. S. Chen and R. Triggiani, Characterization of domains of fractional powers of certain operators arising in elastic systems, and applications, Journal of Differential Equations, Vol 64 (1990), pp. 26–42.

    MathSciNet  Google Scholar 

  11. G. Duvaut and J. L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris (1972).

    MATH  Google Scholar 

  12. T. von Kármán, Festigkeitsprobleme im Maschinenbau, Encyklopedie der Mathematischen Wissenschaften, Vol. 4 (1910), pp. 314–385.

    Google Scholar 

  13. J. Kim, On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal. 23 (1992), pp. 889–899.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Lagnese, Boundary stabilization of thin plates, SIAM Stud. Appl. Math., 10 (1989).

    Google Scholar 

  15. I. Lasiecka, A unified theory for abstract parabolic boundary problems-a semigroup approach, Appl. Math. Optim., Vol. 6 (1980), pp. 287–333.

    Article  MathSciNet  MATH  Google Scholar 

  16. I. Lasiecka, Control and stabilization of interactive structures, Systems and Control in the Twenty-First Century, Birkhäuser, 1997 pp. 245-263.

    Google Scholar 

  17. I. Lasiecka and R. Triggiani, Sharp regularity results for mixed second order hyperbolic equations of Neumann type. Part I: The L 2 boundary case, Annali di Matematica Pura ed Applicata, Vol. 157 (1990), pp. 285–367.

    Article  MathSciNet  MATH  Google Scholar 

  18. I. Lasiecka and R. Triggiani, Sharp regularity results for mixed second order hyperbolic equations of Neumann type. Part II: General boundary data, J. Diff. Equations, Vol. 94 (1991), pp. 112–164.

    Article  MathSciNet  MATH  Google Scholar 

  19. I. Lasiecka and R. Triggiani, Recent advances in regularity of second-order hyperbolic mixed problems and applications, Dynamics Reported-Expositions in Dynamical Systems, Vol. 3 (1994), pp. 25–104.

    Google Scholar 

  20. I. Lasiecka and R. Triggiani, Analyticity and lack thereof, of thermoelastic semigroups, to appear in ESAIM (1998).

    Google Scholar 

  21. I. Lasiecka and R. Triggiani, Two direct proofs on the analyticity of the S.C. semigroup arising in abstract thermo-elastic equations, to appear in Advances in Differential Equations (1998).

    Google Scholar 

  22. I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with coupled/hinged Neumann B.C., to appear in Abstract and Applied Analysis, Vol.3 No. 2 (1998), pp. 153–169.

    MathSciNet  MATH  Google Scholar 

  23. I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with free boundary conditions, Annali di Scuola Normale Superiore di Pisa, Cl. Sci. (14), Vol. XXVII (1998).

    Google Scholar 

  24. I. Lasiecka and R. Triggiani, Structural decomposition of thermoelastic semigroups with rotational forces. To appear in Semigroup Forum.

    Google Scholar 

  25. I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations. Cambridge University Press, Encyclopedia of Mathematics and its Applications, to appear in 1999.

    Google Scholar 

  26. J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris (1969).

    MATH  Google Scholar 

  27. Z. Liu and M. Renardy, A note on the equations of thermoelastic plate, Appl. Math. Lett., vol. 8 no. 3 (1995), pp. 1–6.

    Article  MathSciNet  Google Scholar 

  28. Z. Liu and S. Zheng, Exponential stability of semigroups associated with thermoelastic systems, Quarterly of Applied Mathematics, Vol. 52 (1993), pp. 535–545.

    MathSciNet  Google Scholar 

  29. Z. Liu and S. Zheng, Exponential stability of the Kirchoff plate with thermal or viscoelastic damping, Quarterly of Applied Mathematics, Vol. 55 (1997), pp. 551–564.

    MathSciNet  MATH  Google Scholar 

  30. K. Liu and Z. Liu, Exponential stability and analyticity of abstract linear thermoelastic systems, ZAMP, 48, (1997) pp. 885–904.

    Article  MATH  Google Scholar 

  31. A. Lunardi, On the Ornstein-Uhlenbeck operator in L 2 spaces with respect to invariant measures, Transactions of the American Mathematical Society, Vol. 349, No. 1, January (1997), pp. 155–169.

    Article  MathSciNet  MATH  Google Scholar 

  32. J. R. Modeer and W. A. Nash, Certain approximate analysis of the nonlinear behaviour of plates and shallow shells, in the Proceedings of the Symposium on the Theory of Thin Elastic Shells, at the Technological University of Delft (1959), edited by W. T. Koiter, North Holland, New York (1960).

    Google Scholar 

  33. J. E. M. Rivera, Energy decay rates in linear thermoelasticity, Funkcial. Ekvac., Vol. 35 (1992), pp. 19–30.

    MathSciNet  MATH  Google Scholar 

  34. T. Wah, Large amplitude flexural vibrations of rectangular plates, Int. J. Mech. Sci., Vol. 5 (1963), pp. 425–438.

    Article  Google Scholar 

  35. D. Tataru, On the regularity of boundary traces for the wave equation, Annali di Scuola Normale di Pisa, to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this paper

Cite this paper

Avalos, G., Lasiecka, I., Triggiani, R. (1999). Uniform Stability of Nonlinear Thermoelastic Plates with Free Boundary Conditions. In: Hoffmann, KH., Leugering, G., Tröltzsch, F., Caesar, S. (eds) Optimal Control of Partial Differential Equations. ISNM International Series of Numerical Mathematics, vol 133. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8691-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8691-8_2

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9731-0

  • Online ISBN: 978-3-0348-8691-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics