Skip to main content

Structure functions in homogeneous and non-homogeneous turbulent flows

  • Conference paper
Fundamental Problematic Issues in Turbulence

Part of the book series: Trends in Mathematics ((TM))

Abstract

The extended self-similarity or ESS method was applied to DNS data obtained in different flows, decaying isotropic turbulence and a fully developed turbulent channel flow, and shown to yield satisfactory estimates of the scaling exponents. In our view, ESS should be treated as a useful method though one which does not improve our understanding of the well documented departure from the Kolmogorov (1941a) scaling. The present results tend to confirm the importance of coherent structures in the context of this departure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonia, R. A., Satyaprakash, B. R. and Chambers, A. J.: 1982. Reynolds number dependence of velocity structure functions in turbulent shear flows, Phys. Fluids, 25, 29–37.

    Article  Google Scholar 

  2. Antonia, R. A. and Pearson, B. R.: 1997. Scaling exponents for turbulent velocity and temperature increments, Europhy. Lett. (submitted)

    Google Scholar 

  3. Antonia, R. A., Orlandi, P. and Romano, G. P.: 1998. Scaling of longitudinal velocity increments in a fully developed turbulent channel flow Physics of Fluids A (submitted)

    Google Scholar 

  4. Anselmet, F., Gagne, Y., Hopfinger, E. J. and Antonia, R. A.: 1984. Highorder velocity structure functions in turbulent shear flows, J. Fluid Mech., 140, 63–8

    Article  Google Scholar 

  5. Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F. and Succi, S.: 1993. Extended self-similarity in turbulent flows, Phys. Rev. E, 48, R29–R32.

    Article  Google Scholar 

  6. Benzi, R., Biferale, L., Ciliberto, S., Struglia, M. V. and Tripiccione, R.: 1995. On the intermittent energy transfer at viscous scales in turbulent flows, Europhy. Lett, 32, 709–713.

    Article  Google Scholar 

  7. Boratav, O. N. and Pelz, R. B.: 1997. Structures and structure functions in the inertial range of turbulence, Phys. Fluids, 9, 1400–1415.

    Article  MathSciNet  MATH  Google Scholar 

  8. Camussi, R., Barbagallo, D., Guj, G. and Stella, F.: 1996. Transverse and longitudinal scaling laws in non-homogeneous low Re turbulence, Phys. Fluids, 8, 1181–1191.

    Article  Google Scholar 

  9. Chen, S., Sreenivasan, K. R., Nelkin, M. and Cao, N.: 1997. A refined similarity hypothesis for transverse structure functions, Phys. Rev. Lett., 79, 1253–1256.

    Article  Google Scholar 

  10. Jimenez, J., Wray, A. A., Saffman, P. G. and Rogallo, R. S.: 1993. The structure of intense vorticity in homogeneous isotropic turbulence, J. Fluid Mech., 255, 65–90.

    Article  MathSciNet  MATH  Google Scholar 

  11. Kolmogorov, A. N.: 1941a. Local structure of turbulence in an incompressible fluid for very large Reynolds numbers, Dokl. Akad. Nauk. SSSR, 30, 299–303.

    Google Scholar 

  12. Kolmogorov, A. N.: 1941b. Energy dissipation in locally isotropic turbulence, Dokl. Akad. Nauk. SSSR, 32, 19–21.

    Google Scholar 

  13. Pearson, B. R. and Antonia, R. A.: 1997. Velocity structure functions in a turbulent plane jet, Eleventh Symposium on Turbulent Shear Flows, Grenoble.

    Google Scholar 

  14. She, Z. S., Jackson, E. and Orszag, S. A.: 1990. Intermittent vortex structures in homogeneous isotropic turbulence, Nature, 344, 226–228.

    Article  Google Scholar 

  15. Sreenivasan, K. R. and Antonia, R. A.: 1997. The phenomenology of small-scale turbulence, Ann. Rev. Fluid Mech., 29, 435–472.

    Article  MathSciNet  Google Scholar 

  16. Stolovitzky, G. and Sreenivasan, K. R.: 1993. Scaling of structure functions, Phys. Rev. E, 48, R33–R36.

    Article  Google Scholar 

  17. Vasilenko, V. M., Lyubimtsev, M. M. and Ozmidov, R. V.: 1975. Fluctuations of the turbulent energy dissipation rate and of the higher-order structure functions of the velocity field in the ocean, Iz. Atmos. Ocean. Phys., 11, 926–932.

    Google Scholar 

  18. Vincent, A. and Meneguzzi, M.: 1991. The spatial structure and statistical properties of homogeneous turbulence, J. Fluid Mech., 225, 1–20.

    Article  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this paper

Cite this paper

Orlandi, P., Antonia, R.A., Esposito, P.G. (1999). Structure functions in homogeneous and non-homogeneous turbulent flows. In: Gyr, A., Kinzelbach, W., Tsinober, A. (eds) Fundamental Problematic Issues in Turbulence. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8689-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8689-5_32

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9730-3

  • Online ISBN: 978-3-0348-8689-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics