Skip to main content

Spectral Methods Based on Nonclassical Orthogonal Polynomials

  • Conference paper
Applications and Computation of Orthogonal Polynomials

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 131))

Abstract

Spectral methods for solving differential equations of boundary value type have traditionally been based on classical orthogonal polynomials such as the Chebyshev, Legendre, Laguerre, and Hermite polynomials. In this numerical study we show that methods based on nonclassical orthogonal polynomials may sometimes be more accurate. Examples include the solution of a two-point boundary value problem with a steep boundary layer and two Sturm-Liouville problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.M. Bender and S.A. Orszag, Advanced mathematical methods for scientists and engineers, McGraw-Hill, New York, 1978.

    MATH  Google Scholar 

  2. C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang, Spectral methods in fluid dynamics, Springer-Verlag, Berlin, 1987.

    Google Scholar 

  3. B. Fischer and G.H. Golub, How to generate unknown orthogonal polynomials out of known orthogonal polynomials, J. Comput. Appl. Math., 43 (1992), 99–115.

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Fornberg, A practical guide to pseudospectral methods,Cambridge University Press, Cambridge, 1996.

    MATH  Google Scholar 

  5. D. Funaro, Polynomial approximation of differential equations, Springer-Verlag, Berlin, 1992.

    MATH  Google Scholar 

  6. W. Gautschi, Gauss-type quadrature rules for rational functions, in: H. Brass and G. Hämmerlin, Eds., Numerical integration IV, Internat. Ser. Numer. Math. 112, Birkhäuser, Basel, 1993, 111–130.

    Google Scholar 

  7. W. Gautschi, Algorithm 726: ORTHPOL—a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules, ACM Trans. Math. Software, 20 (1994), 21–62.

    Article  MATH  Google Scholar 

  8. W. Gautschi, Algorithm xxx: GQRAT—Gauss quadrature for rational functions, ACM Trans. Math. Software, to appear.

    Google Scholar 

  9. D. Gottlieb and S.A. Orszag, Numerical analysis of spectral methods: theory and applications, SIAM, Philadelphia, 1977.

    Book  MATH  Google Scholar 

  10. J.D. Pryce, Numerical solution of Sturm-Liouville problems, Clarendon Press, Oxford, 1993.

    MATH  Google Scholar 

  11. F. Stenger, Numerical methods based on sins and analytic functions, Springer-Verlag, New York, 1993.

    Book  Google Scholar 

  12. E. Tadmor, The exponential accuracy of Fourier and Chebyshev differencing methods, SIAM J. Numer. Anal., 23 (1986), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  13. W. Van Assche and I. Vanherwegen, Quadrature formulas based on rational interpolation, Math. Comp., 61 (1993), 765–783.

    Article  MathSciNet  MATH  Google Scholar 

  14. J.A.C. Weideman, The eigenvalues of Hermite and rational spectral differentiation matrices, Numer. Math., 61 (1992), 409–432.

    Article  MathSciNet  Google Scholar 

  15. J.A.C. Weideman and S.C. Reddy, A MATLAB differentiation matrix suite,submitted for publication. See http://osu.orst.edu/~weidemaj/differ.html.

  16. B.D. Welfert, Generation of pseudospectral differentiation matrices, SIAM J. Numer. Anal., 34 (1997), 1640–1657.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this paper

Cite this paper

Weideman, J.A.C. (1999). Spectral Methods Based on Nonclassical Orthogonal Polynomials. In: Gautschi, W., Opfer, G., Golub, G.H. (eds) Applications and Computation of Orthogonal Polynomials. International Series of Numerical Mathematics, vol 131. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8685-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8685-7_18

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9728-0

  • Online ISBN: 978-3-0348-8685-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics