Skip to main content

Seismic, Structural and Petrological Models of the Subcrustal Lithosphere in Southern Germany: A Quantitative Revaluation

  • Chapter

Part of the book series: Pure and Applied Geophysics(PAGEOPH) ((PTV))

Abstract

Anisotropy in the subcontinental lithosphere becomes increasingly important, because it is observed in many seismic studies especially for Pn-waves. Typical rocks of the uppermost mantle are peridotites, which predominantly exhibit a pronounced elastic anisotropy. This anisotropy is mainly caused by the anisotropic elastic properties and the lattice preferred orientation (here referred to as texture) of olivine. To evaluate the elastic anisotropy of peridotites from the subcontinental lithosphere, specimens of the Northern Hessian Depression (Germany) and the Balmuccia Ultramafic Massif (Northern Italy) have been used. They comprise four olivine texture types, which are characteristic for olivine textures observed worldwide. The bulk rock elastic properties have been calculated using olivine and orthopyroxene textures, their single-crystal elastic constants at ambient pressure/temperature conditions and their volume fraction. Clinopyroxene and spinel are assumed to be randomly distributed. The effect of four different orientations of the foliation within the uppermost mantle has been evaluated, since this orientation is usually unknown.

Two of the olivine textures have a pronounced azimuthal dependence of compressional waves when a horizontal foliation within the uppermost mantle is presumed. These variations cause significant azimuthal variations of the P-wave reflections coefficients at the Moho. Primarily, we predict a significant azimuthal dependence of the critical points where the reflected amplitude increases from approximately 15% A to 95%. Possibly, these azimuthal variations can be detected by seismic reflection measurements carried out at earth surface.

The remaining two texture types only manifest a small directional dependence. When anisotropy of compressional waves is observed in seismic studies, these latter types can only be of subordinate importance. However, all of the peridotites investigated are able to explain the seismically observed azimuthal variations of compressional waves when a vertical foliation is proposed. This ambiguity can be substantially reduced when shear waves (S-waves) are considered. The directional distribution of S-wave velocities and of the S-wave splitting exhibits characteristic patterns for the different olivine texture types. This could be used to discriminate between different texture types and orientations of the foliation within the uppermost mantle. A fundamental requirement for a more comprehensive interpretation is the availability of detailed S-wave observations. The maximum S-wave splitting in the peridotites investigated coincides with the maximum of the faster (leading) S-wave. This may be of importance to detect S-wave splitting in future seismic studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, O. L., Schreiber, E., and Liebermann, R. C. (1968), Some Elastic Constant Data on Minerals Relevant to Geophysics, Rev. Geophys. 6, 491–524.

    Article  Google Scholar 

  • Ansorge, J., Bonjer, K. P., and Emter, D. (1979), Structure of the Uppermost Mantle from Long-range Seismic Observations in Southern Germany and the Rhinegraben Area, Tectonophysics 56, 31–48.

    Article  Google Scholar 

  • Babuška, V., and Cara, M., Seismic Anisotropy in the Earth (Kluwer Academic Publ., Dordrecht 1991).

    Book  Google Scholar 

  • Babuška, V., Plomerova, J., and Sileny, J. (1984), Spatial Variations of P Residuals and Deep Structures of the European Lithosphere, Geophys. J. R. Astr. Soc. 79, 363–383.

    Article  Google Scholar 

  • Babuška, V., Plomerova, J., and SiIen, Y J. (1987), Structural model of the subcrustal lithosphere in central Europe. In Composition, Structure and Dynamics of the Lithosphere-asthenosphere System (eds. Fuchs, K., and Froidevaux, C.) (Am. Geophys. Un., Washington DC, 16, 1991) pp. 239–249.

    Chapter  Google Scholar 

  • Bamford, D. (1973), Refraction Data in Western Germany—A Timeterm Interpretation, J. Geophys. 39, 907–927.

    Google Scholar 

  • Bamford, D. (1977), P n -velocity Anisotropy in a Continental Upper Mantle, Geophys. J. R. Astr. Soc. 49, 29–48.

    Article  Google Scholar 

  • Bamford, D., Jeutch, M., and Prodehl, C. (1979), P n -anisotropy Studies in Northern Britain and the Eastern and Western United States, Geophys. J. R. Astr. Soc. 57, 397–439.

    Article  Google Scholar 

  • Blundell, D., Freeman, R., and Mueller, S., A Continent Revealed—The European Geotraverse (Atlas Map 13 Heat-Flow Density, Cambridge University Press 1992).

    Book  Google Scholar 

  • Bormann, P., Burghardt, P.-T., Makeyeva, L. I., and Vinnik, L. P. (1993), Teleseismie shear-stave splitting and deformations in Central Europe, Phys. Earth Planet. Int. 78, 157 166.

    Google Scholar 

  • Bormann, P., Grünthal, G., Kind, R., and Montag, H. (1996), Upper Mantle Anisotropy beneath Central Europe from SKS Wave Splitting: Effects of Absolute Plate Motion and Lithosphere-asthenosphere Boundary Topography?. J. Geodynamics 22 (12), 11–32.

    Article  Google Scholar 

  • Brey, G. (1977), Origin of Olivine Melilitites Chemical and Experimental Constraints, J. Vole. Geotherm. Res. 3, 61–88.

    Article  Google Scholar 

  • Čermak, V., and Bodri, L. (1993), Three-dimensional Deep Temperature Modelling along the European Geotraverse, Tectonophysics 244, 1 - 11.

    Google Scholar 

  • Chastel, Y. B., Dawson, P. R., Wenk, H. R., and Bennett, K. (1993), Anisotropie Convection with Implications for the Upper Mantle, J. Geophys. Res. 98 (B10), 17,757–17,771.

    Article  Google Scholar 

  • Chesnokov, Y. M., and Nevskig, M. V. (1977), Seismic Anisotropy Investigation in the USSR, Geophys. J. R. Astr. Soc. 49, 115–121.

    Article  Google Scholar 

  • Christensen, N. I., and Lundquist, S. M. (1982), Pyroxene Orientation within the Upper Mantle, Geol. Soc. Am. Bull. 93, 279–288.

    Article  Google Scholar 

  • Christensen, N. I., and Ramanantoandro, R. (1971), Elastic Moduli and Anisotropy, of Dunite to 10 Kilobars, J. Geophys. Res. 76, 4003–4010.

    Article  Google Scholar 

  • Christensen, N. I. (1979), Compressional Wave Velocities in Rocks at High Temperatures and Pressures, Critical Thermal Gradients, and Crustal Low-velocity Zones, J. Geophys. Res. 84 (B12), 6849–6857.

    Article  Google Scholar 

  • Christensen, N. I. (1984), The Magnitude Symmetry and Origin of Upper Mantle Anisotropy Based on Fabric Analysis of Ultramafic Tectonites, Geophys. J. R. Astr. Soc. 76, 89–111.

    Article  Google Scholar 

  • Crampin, S. (1981), A Review of Wave Motion in Anisotropie and Cracked Elastic Media, Wave Motion 3, 343–391.

    Article  Google Scholar 

  • Crosson, R. S., and Lin, J. W. (1971), Voigt and Reuss Prediction of Anisotropie Elasticity of Olivine, J. Geophys. Res. 76, 570–578.

    Article  Google Scholar 

  • Edel, J. B., Fuchs, K., Gelbke, C., and Prodehl, C. (1975), Deep Structure of the Southern Rhinegraben Area from Seismic Refraction Investigations, J. Geophys. 41 (4), 333–356.

    Google Scholar 

  • Enderle, U., Mechie, J., Sobolev, S., and Fuchs, K. (1996), Seismic Anisotropy within the Uppermost Mantle of Southern Germany, Geophys. J. Int. 125, 747–767.

    Article  Google Scholar 

  • Francis, D. M. (1978), The Implications of the Compositional Dependence of Texture in Spinel Lherzolite Xenoliths, J. Geol. 86, 473–485.

    Article  Google Scholar 

  • Frisillo, A. L., and Barsch, G. R. (1972), Measurement of Single-crystal Elastic Constants of Bronzite as a Function of Pressure and Temperature, J. Geophys. Res. 77, 6360–6383.

    Article  Google Scholar 

  • Fuchs, K. (1983), Recently Formed Elastic Anisotropy and Petrological Models for the Continental Subcrustal Lithosphere in Southern Germany, Phys. Earth Planet. Int. 31, 93–118.

    Article  Google Scholar 

  • Gajewski, D., and Prodehl, C. (1985), Crustal Structure beneath the Swabian Jura, SW Germany, from Seismic Refraction Investigations, J. Geophys. 56 (2), 69–80.

    Google Scholar 

  • Gajewski, D., and Prodehl, C. (1987), Seismic Refraction Investigation of the Black Forest, Tectonophysics 142 (1), 27–48.

    Article  Google Scholar 

  • Gajewski, D., and Psenčik, I. (1990), Vertical Seismic Profile Synthetics by Dynamic Ray Tracing in Laterally Varying Anisotropie Structures, J. Geophys. Res. 95, 11,301–11,315.

    Google Scholar 

  • Giese, P., and Pavlenkova, N. J., Map 21.1, Europe west-depth of crust-mantle boundary, 1:5000000. In Geothermal Atlas of Europe (eds. Hurtig, E., Cermak, V., Haenel, R., and Zui, V. I.) (Hermann Haack-Verlagsanstalt GmbH, Gotha 1991).

    Google Scholar 

  • Glahn, A., Sachs, P. M., and Achauer, U. (1992), A Teleseismic and Petrological Study of the Crust and Upper Mantle beneath the Geothermal Anomaly Urach/SW-Germany, Phys. Earth Planet. Int. 69 (3–4), 176–206.

    Article  Google Scholar 

  • Haenel, R., Geothermal investigations in the Rhenish Massif. In Plateau Uplift: The Rhenish Shield: A Case History (eds. Fuchs, K., von-Gehlen, K., Maelzer, H., Murawski, H., and Semmel, A.) (Springer Verlag, Berlin 1983) pp. 228–246.

    Google Scholar 

  • Hartmann, G., and Wedepohl, K. H. (1990), Metasomatically Altered Peridotite Xenoliths from the Hessian Depressian (Northwest Germany), Geochim. Cosmochim. Acta 54, 71–82.

    Article  Google Scholar 

  • Hartmann, G., and Wedepohl, K. H. (1993), The Composition of Peridotite Tectonites from the Ivrea Complex, Northern Italy: Residues from Melt Extraction, Geochim. Cosmochim. Acta 57 (8), 1761–1782.

    Article  Google Scholar 

  • Hess, H. H. (1964), Seismic Anisotropy of the Uppermost Mantle under Oceans, Nature 203, 629–631.

    Article  Google Scholar 

  • Hirth, G., and Kohlstedt, D. L. (1995), Experimental Constraints on the Dynamics of the Partially Molten Upper Mantle 2. Deformation in the Dislocation Creep Regime, J. Geophys. Res. 100 (B8), 15,441–15,449.

    Article  Google Scholar 

  • Isaak, D. G. (1992), High Temperature Elasticity of Iron-bearing Olivines, J. Geophys. Res. 97 (B5), 1871–1885.

    Article  Google Scholar 

  • Ji, S., Zhao, X., and Francis, D. (1994), Calibration of Shear-wave Splitting in the Subcontinental Upper Mantle beneath Active Orogenic Belts Using Ultramafic Xenoliths from the Canadian Cordillera and Alaska, Tectonophysics 239, 1–27.

    Article  Google Scholar 

  • Jin, D., Karato, S. I., and Obata, M. (1998), Mechanisms of Shear Localization in the Continental Lithosphere: Inference from the Deformation Microstructures of Peridotites from the Ivrea Zone, Northwestern Italy, J. Struct. Geol. 20/2 3, 195–209.

    Article  Google Scholar 

  • Karato, S. I., Seismic anisotropy due to lattice preferred orientation of minerals: kinematic or dynamic? In High Pressure Research in Mineral Physics (eds. Manghnani, M. Y., and Syono, Y.) (Geophysical Monograph. 39, American Geophysical Union, Washington DC 1987).

    Google Scholar 

  • Karato, S. I. (1988), The Role of Recr_rstallization in the Preferred Orientation of Olivine, Phys. Earth Planet. Int. 51, 107–122.

    Article  Google Scholar 

  • Kumazawa, M., and Anderson, O. L. (1969), Elastic Moduli, Pressure Derivatives and Temperature Derivatives of Single-crystal Olivine and Single-crystal Forsterite, J. Geophys. Res. 74, 5311–5320.

    Article  Google Scholar 

  • Levien, L., Weidner, D. J., and Prewitt, C. T. (1979), Elasticity of Diopside, Phys. Chem. Min. 4 (2), 105–113.

    Article  Google Scholar 

  • Mainprice, D., and Humbert, M. (1993), Methods of calculating petrophysical properties from lattice preferred orientation data. In Seismic Properties of Crustal and Mantle Rocks: Laboratory Measurements and Theoretical Calculations (ed. Burlini, L.) (Surveys in Geophysics 15(5), D. Reidel Publishing Company, Dordrecht-Boston 1994) pp. 575–592.

    Google Scholar 

  • Mainprice, D., and Silver, P. G. (1993), Interpretation of SKS-waves Using Samples from the Subcontinental Lithosphere, Phys. Earth Planet. Inter. 78, 257–280.

    Article  Google Scholar 

  • Menzies, M. A., and Bodinier, J. L. (1993), Growth of the European Lithospheric Mantle: Dependence of Upper-mantle Peridotite Facies and Chemical Heterogeneity on Tectonites and Age, Phys. Earth Planet. Int. 79, 219–240.

    Article  Google Scholar 

  • Mercier, J. C., and Nicolas, A. (1975), Textures and Fabrics of Upper Mantle Peridotites as Illustrated by Xenoliths from Basalts, J. Petrol. 16, 454–487.

    Google Scholar 

  • Mercier, J. C. (1985), Olivines and pvroxenes. In Preferred Orientation in Deformed Minerals and Rocks: An Introduction to Modern Texture Analysis (ed. Wenk, H. R.) (Academic Press, Orlando, United States 1985) pp. 407–430.

    Google Scholar 

  • Montagner, J. P., and Anderson, D. L. (1989), Constrained Reference Mantle Model, Phys. Earth Planet. Int. 58 (2–3), 205–227.

    Article  Google Scholar 

  • Montagner, J.-P., and Tanimoto, T. (1991), Global Upper Mantle Tomography of Seismic Velocities and Anisotropy, J. Geophys. Res. 96, 20,337–20,351.

    Google Scholar 

  • Müller, S., and Panza, G. G. (1984). The lithosphere-asthenosphere system in Europe. In First EGT Workshop: The Northern Segment (eds. Galson, D. A., Mueller, S., and Munch, B.) (European Science Foundation, Strasbourg 1984) pp. 23–26.

    Google Scholar 

  • Nicolas, A., Boudier, F., and Boullier, A. M. (1973), Mechanisms of Flow in Naturally and Experimentally Deformed Peridotites, Am. J. Sei. 273, 853–876.

    Google Scholar 

  • Nicolas, A., and Christensen, N. I. (1987), Formation of anisotropy in upper mantle peridotites: a review. In Composition, Structure and Dynamics of the Lithosphere-asthenosphere System (eds. Fuchs, K., and Froidevaux, C.) (Geodynamics Series. 16, American Geophysical Union, Washington DC, United States 1987) pp. 11 123.

    Google Scholar 

  • Nicolas, A., Structures of ophiolites and dynamics of oceanic lithosphere (Kluwer Academic; Petrology and Structural Geology 4, 1989).

    Book  Google Scholar 

  • Nicolas, A., The Mid-oceanic Ridges: Mountains below Sea Level (Springer Verlag, Berlin—New York—Heidelberg 1995).

    Google Scholar 

  • Oehm, J., Schneider, A., and Wedepohl, K. H. (1983), Upper Mantle Rocks from Basalts of the Northern Hessian Depression, Tscherm. Min. Petr. Mitt. 32, 25–48.

    Article  Google Scholar 

  • Peselnick, L., Nicolas, A., and Stevenson, P. R. (1974), Velocity Anisotropy in a Mantle Peridotite from the Ivrea Zone: Application to Upper Mantle Anisotropy, J. Geophys. Res. 79, 1175–1182.

    Article  Google Scholar 

  • Plenefisch, T., and Bonder, K. P. (1995), The stress tensor in the Rhine Graben area derived from earthquake focal mechanisms. In Seismotectonics and Seismic Hazard in the Roer Valley Graben; With Emphasis on the Roermond Earthquake of April 13, 1992 (eds. van-Eck, T. and Davenport, C. A.), Geol. en Mijnbouw. 73(2–4), 169–172.

    Google Scholar 

  • Plenefisch, T., Faber, S., and Bonder, K.-P. (1994), Investigations of S n and P n Phases in the Area of the Upper Rhinegraben and Northern Switzerland, Geophys. J. Int. 119, 402–420.

    Article  Google Scholar 

  • Pollack, H. N., and Chapman, D. S. (1977), On the Regional Variation of Heat Flow, Geotherms and Lithospheric Thickness, Tectonophysics 38, 279–296.

    Article  Google Scholar 

  • Press, S., WITT, G., Seck, H. A., Eonov, D., and Kovalenko, V. I. (1986), Spinel Peridotite Xenoliths from the Tariat Depression, Mongolia: I. Major Element Chemistry and Mineralogy of a Primitive Mantle Xenoliths Suite, Geochim. Cosmochim. Acta 50, 2587–2599.

    Article  Google Scholar 

  • Ringwood, A. E. (1973), Phase Transformations and their Bearing on the Dynamics of the Mantle, Fortschr. Min. 50, 113–139.

    Google Scholar 

  • Sachs, P. M. (1988), Untersuchungen zum Stoffbestand der tieferen Lithosphäre an Xenolithen südwestdeutscher Vulkane, Ber. Inst. Geophys. Univ. Stuttgart, 249 pp.

    Google Scholar 

  • Savage, M. K., and Silver, P. G. (1993), Mantle Deformation and Tectonics: Constraints from Seismic Anisotropy in the Western United States, Phys. Earth Planet. Int. 78, 207–227.

    Article  Google Scholar 

  • Siegesmund, S., Vollbrecht, A., Chlupac, T., Nover, G., Dörrast, H., Müller, J., and Weber, K. (1993), Fabric Controlled Anisotropy of Petrophysical Properties Observed in KTB Core Samples, Scientific Drilling 4, 31–54.

    Google Scholar 

  • Siegesmund, S., Helmig, K., and Kruse, R. (1994), Complete Texture Analysis of a Deformed Amphibolite: Comparison between Neutron Diffraction and U-stage Data, J. Struct. Geol. 16, 131–142.

    Article  Google Scholar 

  • Siegesmund, S. (1996), The Significance of Rock Fabrics for the Geological Interpretation of Geophysical Anisotropies, Geotekt. Forsch. 85, 1–123.

    Google Scholar 

  • Silver, P. G., and Chan, W. (1991), Shear-wave Splitting and Subcontinental Mantle Deformation, J. Geophys. Res. 96, 16,429–16,454.

    Article  Google Scholar 

  • Silver, P. G., and Kaneshima, S. (1993), Constraints on Mantle Anisotropy beneath Pre-Cambrian North America from a Transportable Teleseismic Experiments, Geophys. Res. Lett. 20 (12), 1127–1130.

    Article  Google Scholar 

  • Skrotzki, W., Mechanisms of texture development in rocks. In Textures of Geological Materials (eds. Bunge, H. J., Siegesmund, S., Skrotzki, W. and Weber, K.) (DGM Informationsgesellschaft Verlag, Oberursel 1994) pp. 167–186.

    Google Scholar 

  • Skrotzki, W., Wedel, A., and Weber, K. (1992), Microstructure and Texture in Peridotites from the Balmuccia Massif (NW-Italy), Geotekt. Forsch. 78, 55–88.

    Google Scholar 

  • Skrotzki, W., Wedel, A., Weber, K., and Müller, W. F. (1990), Microstructure and Texture in Lherzolites of the Balmuccia Massif and their Significance Regarding the Thermomechanical History, Tectonophysics 179, 227–251.

    Article  Google Scholar 

  • Takeshita, T., Wenk, H. R., Canovoa, G. R., and Molinari, A., Simulation of dislocation-assisted plastic deformation in olivine polycrystals. In Deformation Processes in Minerals, Ceramics and Rocks (eds. Barber, D. J. and Meredith, P. G.) (Unwin Hyman. London, United Kingdom 1990) pp. 365–374.

    Chapter  Google Scholar 

  • Taylor, G. I. (1923), The Motion of Ellipsoidal Particles in a Viscous Fluid, Proc. R. Soc. London, Ser. A. 103, 58–61.

    Article  Google Scholar 

  • Vetter, E., and Minster, J. (1981), P n Velocity Anisotropy in Southern California, Bull. Seismol. Soc. Am. 71, 1511–1530.

    Google Scholar 

  • Vinnik, L. P., Krishna, V. G., Kind, R., Borman, P., and Stammler, K. (1994), Shear-wave Splitting in the Records of the German Regional Seismic Network, Geophys. Res. Lett. 21 (6), 457–460.

    Article  Google Scholar 

  • Vinnik, L. P., Green, R. W. E., and Nicolaysen, L. O. (1995), Recent Deformations of the Deep Continental Root Beneath Southern Africa, Nature 375, 50–52.

    Article  Google Scholar 

  • Vinnik, L. P. (1997), Seismic Anisotropy and Mantle Flow, Geowissenschaften 15, 100–104. VOIGT, W., Lehrbuch der Kristallphysik (Teubner Verlag, Leipzig 1928).

    Google Scholar 

  • Wedel, A. (1990), Mikrostruktur und Texturuntersuchungen an Peridotiteinschlüssen in Basalten der Hessischen Senke, Göttinger Arb. Geo. Paläont. 45, 63 pp.

    Google Scholar 

  • Wedel, A., Skrotzki, W., and Weber, K. (1992), Microstructure and Texture in Peridotite Xenoliths from the Hessian Depression, Geotekt. Forsch. 78, 89–125.

    Google Scholar 

  • Wenk, H. R., Bennet, K., Canova, G. R., and Molinari, A. (1991), Modelling Plastic Deformation of Peridotite with the Selfconsistent Theory, J. Geophys. Res. 96 (B5), 8337–8349.

    Article  Google Scholar 

  • Werner, D., and Kahle, H. G. (1980), A Geophysical Study of the Rhinegrahen. Kinematics and Geothermics, Geophys. J. R. Astr. Soc. 62, 617–630.

    Article  Google Scholar 

  • Zees, S., Gajewski, D., and Prodehl, C. (1990), Crustal Structure of Southern Germany from Seismic Refraction Data, Tectonophysics 176 (1–2), 59–86.

    Article  Google Scholar 

  • Zhang, S., and Karato, S. I. (1995), Lattice Preferred Orientation of Olivine Aggregates Deformed in Simple Shear, Nature 375, 774–777.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Weiss, T., Siegesmund, S., Bohlen, T. (1999). Seismic, Structural and Petrological Models of the Subcrustal Lithosphere in Southern Germany: A Quantitative Revaluation. In: Gajewski, D., Rabbel, W. (eds) Seismic Exploration of the Deep Continental Crust. Pure and Applied Geophysics(PAGEOPH). Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8670-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8670-3_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6210-2

  • Online ISBN: 978-3-0348-8670-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics