Skip to main content

Detection, cloning, and distribution of minisatellites in some mammalian genomes

  • Chapter
DNA Fingerprinting: State of the Science

Part of the book series: Progress in Systems and Control Theory ((EXS))

  • 609 Accesses

  • 12 Citations

Summary

The chromosomal distribution of minisatellites (cloned and/or detected using natural or synthetic tandem repeats) is strikingly different in man and mouse. In man, the vast majority is clustered in the terminal band of a subset of chromosome arms. Interestingly, the class of shorter tandem repeats called microsatellites is widespread along the chromosomes, suggesting that minisatellites can be created or maintained only in certain regions. In order to gain a better knowledge of these areas, we have studied a sub-telomeric cosmid from the pseudoautosomal region.

Sixty kilo bases of human genomic DNA starting approximately 20 kilobases from the human sex chromosomes telomere have previously been independently isolated in two cosmid clones (locus DXYSI4) (Cooke et al., 1985); Rouyer et al., 1986). We have studied in more detail one of the two cosmids from this locus and found that it contains four different minisatellite structures representing 20 kilo bases of the cosmid. These structures are unrelated to each other or to the mini satellite family described by Jeffreys et al. (1985). They display different degrees of polymorphism correlated with varying amounts of inner homogeneity. Combined with the previous description of an additional mini satellite (Cooke et al., 1985; Inglehearn and Cooke, 1990) in the contiguous cosmid, our observation shows that these structures may represent an important proportion of the DNA in sub-telomeric regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ali S, Müller CR, Epplen JT (1986) DNA finger printing by oligonucleotide probes specific for simple repeats. Hum Genet 74: 239–243

    Article  Google Scholar 

  • Armour JAL, Povey S, Jeremiah S, Jeffreys AJ (1990) Systematic cloning of human minisatellites from ordered array charomid libraries. Genomics 8: 501–512

    Article  Google Scholar 

  • Armour JAL, Vergnaud G, Crosier M, Jeffreys AJ (1992) Isolation of human minisatellite loci detected by synthetic tandem repeat probes: direct comparison with cloned DNA fingerprinting probes. Human Molecular Genetics 1: 319–323

    Article  Google Scholar 

  • Bell GI, Serby MJ, Rutter WJ (1982) The highly polymorphic region near the human insulin gene is composed of simple tandemly repeating sequences. Nature 295: 31–35

    Article  Google Scholar 

  • Bernardi G, Bernardi G (1986) The human genome and its evolutionary context. Cold Spring Harbor Symp Quant Biol 51: 479–487

    Article  Google Scholar 

  • Blonden LAJ, den Dunnen JT, van Paassen HMB, Wapenaar MC, Grootscholten PM, Ginjaar HB, Bakker E et al. (1989) High resolution deletion breakpoint mapping in the DMD gene by whole cosmid hybridization. Nucleic Acids Res 17: 5611–5621

    Article  Google Scholar 

  • Brown WRA (1988) A physical map of the human pseudoautosomal region. EMBO J 7: 2377–2385

    Google Scholar 

  • Brown WRA (1989) Molecular cloning of human telomeres in yeast. Nature 338: 774–776

    Article  Google Scholar 

  • Cooke HJ, Brown WRA, Rappold GA (1985) Hypervariable telomeric sequences from the human sex chromosomes are pseudoautosomal. Nature 317: 687

    Article  Google Scholar 

  • Cross SH, Allshire RC, McKay SJ, McGill NI, Cooke HJ (1989) Cloning of human telomeres by complementation in yeast. Nature 338: 771–774

    Article  Google Scholar 

  • Dutrillaux B (1973) Nouveau systèème de marquage chromosomique: les bandes T. Chromosoma 41: 395–402

    Article  Google Scholar 

  • Dutrillaux B (1979) Chromosomal evolution in primates: tentative phylogeny from Microcebus murinus (Prosimian) to man. Hum Genet 48: 251–314

    Article  Google Scholar 

  • Ellis NA, Goodfellow PJ, Pym B, Smith M, Palmer M, Frischauf A-M, Goodfellow PN (1989) The pseudoautosomal boundary in man is defined by an Alu repeat sequence inserted on the Y chromosome. Nature 337: 81–84

    Article  Google Scholar 

  • Georges M, Gunawardana A, Threadgill D, Lathrop M, Olsaker I, Mishra A, Sargeant L et al. (1991) Characterization of a set of variable number of tandem repeat markers conserved in bovidae. Genomics 11: 24–32

    Article  Google Scholar 

  • Inglehearn CF, Cooke HJ (1990) A VNTR immediately adjacent to the human pseudoautosomal telomere. Nucleic Acids Res 18: 471–476

    Article  Google Scholar 

  • Jarman AP, Wells RA (1989) Hypervariable minisatellites: recombinators or innocent bystanders. Trends Genet 5: 367–371

    Article  Google Scholar 

  • Jeffreys JJ, Wilson V, Thein SL (1985) Hypervariable ‘minisatellite’ regions in human DNA. Nature 314: 67–73

    Article  Google Scholar 

  • Jeffreys AJ, Royle NJ, Wilson V, Wong Z (1988) Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature 332: 278–281

    Article  Google Scholar 

  • Jones DSC, Schofield JP (1990) A rapid method for isolating high quality plasmid DNA suitable for DNA sequencing. Nucleic Acids Res 18: 7463–7464

    Article  Google Scholar 

  • Julier C, de Gouyon B, Georges M, Guénet JL, Nakamura Y, Avner P, Lathrop GM (1990) Minisatellite linkage maps in the mouse by cross-hybridization with human probes containing tandem repeats. Proc Natl Acad Sci USA 87: 4585–4589

    Article  Google Scholar 

  • Lauthier V, Mariat D, Vergnaud G (1992) CEB15 detects a VNTR locus (Het: 92%) on chromosome lp. Human Molecular Genetics 1: 63

    Google Scholar 

  • Lauthier V, Mariat D, Zoroastro M, Vergnaud G (1991a) A synthetic probe STR14C19, detects a new polymorphic locus at 16pter (D16S282). Nucleic Acids Res 19: 4015

    Article  Google Scholar 

  • Lauthier V, Mariat D, Zoroastro M, Vergnaud G (1991b) A synthetic probe, STR14C13, detects a new polymorphic locus on chromosome arm 7q (D7S450). Nucleic Acids Res 19: 4014

    Google Scholar 

  • Lauthier V, Vergnaud G (1992) CEB13 detects a VNTR locus (Het: 93%) on chromosome 7q. Human Molecular Genetics 1: 64

    Article  Google Scholar 

  • Mariat D, De Gouyon B, Julier C, Lathrop M, Vergnaud G (1993) Genetic mapping through the use of synthetic tandem repeats in the mouse genome. Mammalian Genome 4: 135–140

    Article  Google Scholar 

  • Mariat D, Guérin G, Bertaud M, Vergnaud G (1992) Modulation of polymorphic loci detection with synthetic tandem repeat variants. Mammalian Genome 3: 546–549

    Article  Google Scholar 

  • Mariat D, Vergnaud G (1992) Detection of polymorphic loci in various genomes with Synthetic Tandem Repeats. Genomics 12: 454–458

    Article  Google Scholar 

  • Nakamura Y, Carlson M, Krapcho K, Kanamori M, White R (1988) New approach for isolation of VNTR markers. Am J Hum Genet 43: 854–859

    Google Scholar 

  • Nakamura Y, Leppert M, O’Connell P, Wolff R, Holm T, Culver M, Martin C et al. (1987) Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 235: 1616–1622

    Article  Google Scholar 

  • Page DC, Bieker K, Brown LG, Hinton S, Leppert M, Lalouel JM, Lathrop M et al. (1987) Linkage, physical mapping, and DNA sequence analysis of pseudoautosomal loci on the human X and Y chromosomes. Genomics 1: 243–256

    Article  Google Scholar 

  • Petit C, Levilliers J, Weissenbach J (1988) Physical mapping of the human pseudo-autosomal region, comparison with genetic linkage map. EMBO J 7: 2369–2376

    Google Scholar 

  • Rappold GA, Lehrach H (1988) A long range restriction map of the pseudoautosomal region by partial digest PFGE analysis from the telomere. Nucleic Acids Res 16: 5361–5377

    Article  Google Scholar 

  • Rouyer R, de la Chapelle A, Andersson M, Weissenbach J (1990) An interspersed repeated sequence specific for human subtelomeric regions. EMBO J 9: 505–514

    Google Scholar 

  • Rouyer F, Simmler MC, Vergnaud G, Johnsson C, Levilliers J, Petit C, Weissenbach J (1986) The pseudoautosomal region of the human sex chromosomes. Cold Spring Harbor Symp Quant Biol 51: 221–228

    Article  Google Scholar 

  • Royle NJ, Clarkson RE, Wong Z, Jeffreys AJ (1988) Clustering of hypervariable minisatellites in the proterminal regions of human autosomes. Genomics 3: 352–360

    Article  Google Scholar 

  • Schäfer R, Zischler H, Birsner U, Becker A, Epplen JT (1988) Optimized oligonucleotide probes for DNA fingerprinting. Electrophoresis 9: 369–374

    Article  Google Scholar 

  • Vergnaud G (1989) Polymers of random short oligonucleotides detect polymorphic loci in the human genome. Nucleic Acids Res 17: 7623–7630

    Article  Google Scholar 

  • Vergnaud G, Mariat D, Apiou F, Aurias A, Lathrop M, Lauthier V (1991a) The use of synthetic tandem repeats to isolate new VNTR loci: cloning of a human hypermutable sequence. Genomics 11: 135–144

    Article  Google Scholar 

  • Vergnaud G, Mariat D, Zoroastro M, Lauthier V (1991b) Detection of single and multiple polymorphic loci by synthetic tandem repeats of short oligonucleotides. Electrophoresis 12: 134–140

    Article  Google Scholar 

  • Weissenbach J, Gyapay G, Dib C, Vignal A, Morissette J, Milasseau P, Vaysseix G et al. (1992) A second-generation linkage map of the human genome. Nature 359: 794–801

    Article  Google Scholar 

  • White R, Lalouel J-M, Lathrop M, Leppert M, Nakamura Y, O’Connell P (1990) “Linkage maps of Man (Homo Sapiens)”. In: S. J. O’Brian (ed.) Genetics Maps. Locus Maps of Complex Genomes, 5th edition, Cold Spring Harbor Laboratory Press, Vol. 5, pp 134–157

    Google Scholar 

  • Wong Z, Wilson V, Patel I, Povey S, Jeffreys AJ (1987) Characterization of a panel of highly variable minisatellites cloned from human DNA. Annu. Hum. Genet. 51: 269–288

    Article  Google Scholar 

  • Wyman AR, White R (1980) A highly polymorphic locus in human DNA. Proc. Natl. Acad. Sci. USA 77: 6754–6758

    Article  Google Scholar 

  • Zischler H, Kammerbauer C, Studer R, Grzeschik K-H, Epplen JT (1992) Dissecting (CAC)5/(GTG)5 multilocus fingerprints from man into individual locus-specific, hypervariable components. Genomics 13: 983–990

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Basel AG

About this chapter

Cite this chapter

Vergnaud, G. et al. (1993). Detection, cloning, and distribution of minisatellites in some mammalian genomes. In: Pena, S.D.J., Chakraborty, R., Epplen, J.T., Jeffreys, A.J. (eds) DNA Fingerprinting: State of the Science. Progress in Systems and Control Theory. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8583-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8583-6_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-2906-8

  • Online ISBN: 978-3-0348-8583-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics