Advertisement

State Space Formulas for Coprime Factorizations

Chapter
Part of the Operator Theory: Advances and Applications book series (OT, volume 62)

Abstract

In this paper we will give a uniform approach to the derivation of state space formulas of coprime factorizations, of different types, for rational matrix functions.

MSC

15A54 47A68 93B36 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1949]
    A. Beurling. “On two problems concerning linear transformations in Hilbert Space”. Acta Math., 81, 239–255.Google Scholar
  2. [1980]
    A Desoer, C.A., R.W. Liu, J. Murray and R. Saeks. “Feedback system design: the fractional representation approach”, IEEE TAC, 25, 399–412.Google Scholar
  3. [1971]
    R.G. Douglas, H.S. Shapiro and A.L Shields. “Cyclic vectors and invariant subspaces for the backward shift.” Ann. Inst. Fourier, Grenoble, 20,1, 37–76.Google Scholar
  4. [1984]
    J.C. Doyle, “ Lecture Notes in Advances in Multivariable Control”, ONR/Honeywell Workshop, Minneapolis, MN.Google Scholar
  5. [1975]
    P. A. Fuhrmann, “On Hankel operator ranges, meromorphic pseudo-continuation and factorization of operator valued analytic functions”, J. Loud. Math. Soc., (2)13, 323–327.Google Scholar
  6. [1976]
    P. A. Fuhrmann, “Algebraic system theory: An analyst’s point of view”, J. Franklin Inst., 301, 521–540.Google Scholar
  7. [1979]
    P. A. Fuhrmann, “Linear feedback via polynomial models”, Int. J. Contr. 30, 363–377.Google Scholar
  8. [1981]
    P. A. Fuhrmann, Linear Systems and Operators in Hilbert Space, McGraw-Hill, New York.Google Scholar
  9. [1985]
    P. A. Fuhrmann, “The algebraic Riccati equation — a polynomial approach”, Syst. and Contr. Lett., 369–376.Google Scholar
  10. [1991]
    P. A. Fuhrmann, “ A polynomial approach to Hankel norm and balanced approximation”, Lin. Alg. Appl., 146, 133–220.Google Scholar
  11. [1992]
    P. A. Fuhrmann and R. J. Ober, “A functional approach to LQG balancing”, to appear in International Journal of Control.Google Scholar
  12. [1985]
    J. Hammer, “Nonlinear systems, stabilization, and coprimeness”, International Journal of Control, Vol. 42, pp. 1–20.Google Scholar
  13. [1978]
    M. L. J. Hautus and M. Heymann, “Linear feedback-an algebraic approach”, SIAM J. Control16, 83–105.Google Scholar
  14. [1980]
    T. Kailath, Linear systems, Prentice Hall, Englewood Cliffs, N.J.Google Scholar
  15. [1982]
    P. Khargonekar and E. Sontag. “On the relation between stable matrix factorizations and regulable realizations of linear systems over rings”, IEEE TAC, 27, 627–638.Google Scholar
  16. [1989]
    D. McFarlane and K. Glover, “Robust controller design using normalized coprime factor plant descriptions”, Lecture Notes in Control and Information Sciences, vol. 10, Springer Verlag.Google Scholar
  17. [1987]
    D. Meyer and G. Franklin, “A connection between normalized coprime factorizations and linear quadratic regulator theory”, IEEE Trans, on Auto. Contr. 32, 227–228.Google Scholar
  18. [1975]
    A. S. Morse, “System invariants under feedback and cascade control”, Lecture Notes in Economics and Mathematical Systems, vol. 131 (Proc. Symp. Udine), Springer Verlag.Google Scholar
  19. [1984]
    C.N. Nett, CA. Jacobson and M.J. Balas. “ A connection between state-space and doubly coprime fractional representations”. IEEE TAC, 29, 831–832.Google Scholar
  20. [1989]
    R.J. Ober, D.C. McFarlane. “Balanced canonical forms: a normalized coprime factor approach.” Linear Algebra and its Applications, 122-124: 23–640.Google Scholar
  21. [1970]
    H. H. Rosenbrock, State Space and Multivariable Theory, J.Wiley, New York.Google Scholar
  22. [1988]
    M.S. Verma, “Coprime Fractional Representations and Stability of Nonlinear Feedback Systems”, International Journal of Control, 48, 897–918.Google Scholar
  23. [1985]
    M. Vidyasagar, Control System Synthesis: A Coprime Factorization Approach, M.I.T. Press, Cambridge MA.Google Scholar
  24. [1988]
    M. Vidyasagar. “Normalized coprime factorizations for non strictly proper systems”. Automatica, 85–94.Google Scholar
  25. [1976]
    D. C. Youla, J. J. Bongiorno and H. A. Jabr, “Modern Wiener-Hopf design of optimal controllers, Pt. 2 The multivariable case”, IEEE Transactions on Automatic Control, 21, 319–338.Google Scholar

Copyright information

© Springer Basel AG 1993

Authors and Affiliations

  1. 1.Department of MathematicsBen-Gurion University of the NegevBeer ShevaIsrael
  2. 2.Center for Engineering Mathematics Programs in Mathematical SciencesThe University of Texas at DallasRichardsonUSA

Personalised recommendations