Skip to main content

The Spectrum of Schrödinger Operators in L p (R d) and in C 0(R d)

  • Chapter
  • 273 Accesses

Part of the Operator Theory: Advances and Applications book series (OT,volume 70)

Abstract

The aim of this paper is to present results on the independence of the spectrum of Schrödinger operators in different spaces. We treat Schrödinger operators of a very general kind, namely - ½Δ perturbed by certain measures μ.

Keywords

  • Elliptic Operator
  • Dirichlet Form
  • Selfadjoint Operator
  • Continuous Semigroup
  • Generalize Eigenfunction

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Presented at the meeting by J. Voigt

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-0348-8545-4_10
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   74.99
Price excludes VAT (USA)
  • ISBN: 978-3-0348-8545-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References.

  1. D. Alboth: Closable translation invariant operators and perturbations by potentials. Dissertation, Kiel 1991.

    Google Scholar 

  2. W. Arendt: Gaussian estimates and p-independence of the spectrum in Lp. Manuscript 1993.

    Google Scholar 

  3. A. G. Belyi, Yu. A. Semenov: Lp-theory of Schrödinger semigroups II. Sibirskii Matematicheskii Zhurnal 31, 16–26 (1990) (russian). Translation: Siberian Math. J. 31, 540-549 (1990).

    MathSciNet  Google Scholar 

  4. J. M. Berezanski: Expansions in eigenfunctions of selfadjoint operators. Transi. Math. Monogr., vol. 17, Amer. Math. Soc, Providence, 1968.

    Google Scholar 

  5. P. L. Butzer, H. Berens: Semi-groups of operators and approximation. Springer-Verlag, Berlin, 1967.

    CrossRef  MATH  Google Scholar 

  6. R. Hempel, J. Voigt: The spectrum of a Schrödinger operator in L p(RN) is p-independent. Commun. Math. Phys. 104, 243–250 (1986).

    MathSciNet  ADS  CrossRef  MATH  Google Scholar 

  7. R. Hempel, J. Voigt: On the L p-spectrum of Schrödinger operators. J. Math. Anal. Appl. 121, 138–159 (1987).

    MathSciNet  CrossRef  MATH  Google Scholar 

  8. I. W. Herbst, A. D. Sloan: Perturbation of translation invariant positivity preserving semigroups on L 2(RN). Transactions Amer. Math. Soc. 236, 325–360 (1978).

    MathSciNet  MATH  Google Scholar 

  9. E. Hllle, R. S. Phillips: Functional analysis and semi-groups. Amer. Math. Soc, Providence, 1957.

    Google Scholar 

  10. A. M. Hinz, G. Stolz: Polynomial boundedness of eigensolutions and the spectrum of Schrödinger operators. Math. Ann. 294, 195–211 (1992).

    MathSciNet  CrossRef  MATH  Google Scholar 

  11. J. van Neerven: The adjoint of a semigroup of linear operators. Lecture Notes in Math. 1529, Springer-Verlag, Berlin, 1992.

    Google Scholar 

  12. Th. Poerschke, G. Stolz, J. Weidmann: Expansions in generalized eigenfunctions of self adjoint operators. Math. Z. 202, 397–408 (1989).

    MathSciNet  CrossRef  MATH  Google Scholar 

  13. M. Reed, B. Simon: Methods of modern mathematical physics II: Fourier analysis, self-adjointness. Academic Press, New York, 1975.

    MATH  Google Scholar 

  14. G. Schreieck, J. Voigt: Stability of the Lp-spectrum of Schrödinger operators with form small negative part of the potential. In: “Functional Analysis”, Proc. Essen 1991, Bierstedt, Pietsch, Ruess, Vogt eds., Marcel Dekker, to appear.

    Google Scholar 

  15. I. Eh. Shnol’: Ob ogranichennykh resheniyakh uravneniya vtorogo poryadka v chastnykh proizvodnykh. Dokl. Akad. Nauk SSSR 89, 411–413 (1953).

    MATH  Google Scholar 

  16. M. A. Shubin: Spectral theory of elliptic operators on non-compact manifolds. In: “Méthodes semi-classiques, vol. 1”, Astérisque 207, 37–108 (1992).

    Google Scholar 

  17. B. Simon: Schrödinger semigroups. Bull. (N. S.) Amer. Math. Soc. 7, 447–526 (1982).

    CrossRef  MATH  Google Scholar 

  18. P. Stollmann, J. Voigt: Perturbation of Dirichlet forms by measures. Preprint 1992.

    Google Scholar 

  19. K.-Th. Sturm: On the Lp-spectrum of uniformly elliptic operators on Riemannian manifolds. J. Funct. Anal., to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1994 Springer Basel AG

About this chapter

Cite this chapter

Hempel, R., Voigt, J. (1994). The Spectrum of Schrödinger Operators in L p (R d) and in C 0(R d). In: Demuth, M., Exner, P., Neidhardt, H., Zagrebnov, V. (eds) Mathematical Results in Quantum Mechanics. Operator Theory: Advances and Applications, vol 70. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8545-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8545-4_10

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9673-3

  • Online ISBN: 978-3-0348-8545-4

  • eBook Packages: Springer Book Archive