Advertisement

Symplectic capacities

  • Helmut Hofer
  • Eduard Zehnder
Part of the Birkhäuser Advanced Texts Basler Lehrbücher book series (BAT)

Abstract

In the following we introduce a special class of symplectic invariants discovered by I. Ekeland and H. Hofer in [68, 69] for subsets of ℝ2n. They were led to these invariants in their search for periodic solutions on convex energy surfaces and called them symplectic capacities. The concept of a symplectic capacity was extended to general symplectic manifolds by H. Hofer and E. Zehnder in [123]. The existence proof of these invariants is based on a variational principle; it is not intuitive, and will be postponed to the next chapter. Taking their existence for granted, the aim of this chapter is rather to deduce the rigidity of some symplectic embeddings and, in addition, the rigidity of the symplectic nature of mappings under limits in the supremum norm, which will give rise to the notion of a “symplectic homeomorphism”.

Keywords

Symplectic Manifold Volume Preserve Capacity Function Symplectic Homology Symplectic Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Basel AG 1994

Authors and Affiliations

  • Helmut Hofer
    • 1
  • Eduard Zehnder
    • 1
  1. 1.Mathematik ETH ZentrumZürichSwitzerland

Personalised recommendations