Skip to main content

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 117))

Abstract

In highly integrated electric circuits only a few elements are stimulated by an input signal. The major part of basic elements remains latent. The latency can be exploited on the numerical simulation level by partitioning or by multirate strategies. Advantages and disadvantages of both approaches are discussed. It seems that multirate integration schemes, which use different step sizes for the active and the latent components, are more promising. Furthermore, a combination of partitioned and multirate schemes forms a base for a parallel evaluation. The inverter chain serves as a typical example for which partitioned Runge-Kutta methods and multirate Rosenbrock-Wanner schemes have been tested.

The author is supported by FORTWIHR: The Bavarian Consortium for High Performance Scientific Computing

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. F. Andrus: Stability of a multi-rate method for numerical integration of ode’s, Computers Math. Applic. 25 (1993), pp. 3–14

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Bulirsch: Die Mehrzielmethode zur numerischen Lösung von nicht linearen Randwertproblemen und Aufgaben der optimalen Steuerung. Lecture at the course in “Flugbahnoptimierung” of the Carl Cranz Gesellschaft, October 1971

    Google Scholar 

  3. R. Bulirsch and A. Gilg: Effiziente numerische Verfahren für die Simulation elektrischer Schaltungen. In H. Schwärtzel (ed.), Informatik in der Praxis, Springer Verlag, 1986, pp. 3–12

    Chapter  Google Scholar 

  4. G. Denk and P. Rentrop: Mathematical models in electric circuit simulation and their numerical treatment. NUMDIFF5, ed. K. Strehmel, Teubner, Leipzig, Bd. 121 (1991), pp. 305–316

    MathSciNet  Google Scholar 

  5. U. Feldmann, U. A. Wever, Q. Zheng, R. Schultz and H. Wriedt: Algorithms for modern circuit simulation, Archiv für Elektronik und Übertragungstechnik 46 (1992), pp. 274–285

    Google Scholar 

  6. M. Günther, P. Rentrop: Multirate Rosenbrock-Wanner methods and latency of electric circuits, Appl. Numer. Math. 13 (1993), pp. 83–102.

    Article  MathSciNet  MATH  Google Scholar 

  7. C. W. Gear and R. R. Wells: Multirate linear multistep methods, BIT 24 (1984), pp. 484–502

    MathSciNet  MATH  Google Scholar 

  8. E. Hairer: Order conditions for numerical methods for partitioned ordinary differential equations, Numer. Math. 36 (1981), pp. 431–445

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Hairer, S. P. Nørsett and G. Wanner: Solving ordinary differential equations I. Nonstiff problems, Springer Verlag, Berlin, 1987

    MATH  Google Scholar 

  10. E. Hairer, G. Wanner: Solving ordinary differential equations II. Stiff problems, Springer Verlag, Berlin, 1991

    Book  MATH  Google Scholar 

  11. W. Kampowsky, P. Rentrop and W. Schmidt: Classification and numerical simulation of electric circuits, Surveys Mathematics Industry 2 (1992), pp. 23–65

    MathSciNet  MATH  Google Scholar 

  12. P. Kaps and P. Rentrop: Generalized Runge-Kutta methods of order four with stepsize control for stiff ordinary differential equations, Numer. Math. 33 (1979), pp. 55–68

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Lory: Simulation of VLSI-circuits: relaxation techniques. In: J. Manley, S. McKee, D. Owens (eds. ): Proceedings ECMI 3, Glasgow 1988, Teubner-Kluwer, Stuttgart, pp. 409–414 (1990)

    Google Scholar 

  14. U. Nowak: Dynamic sparsing in stiff extrapolation methods, Preprint SC 92–21, Konrad-Zuse-Zentrum für Informationstechnik Berlin, 1992

    Google Scholar 

  15. P. Rentrop: Partitioned Runge-Kutta methods with stiffness detection and stepsize control, Numer. Math. 47 (1985), pp. 545–564

    Article  MathSciNet  MATH  Google Scholar 

  16. W. Schmidt: Limit cycle computation of oscillating electric circuits, In this Proceedings

    Google Scholar 

  17. R. Schultz: Local timestep control for simulating electrical circuits. In R. Bank et al., Mathematical Modelling and Simulation of Electrical Circuits and Semiconductor Devices, ISNM 93 (1990), pp. 73–84

    Google Scholar 

  18. E. R. Sieber, U. Feldmann, R. Schultz and H. Wriedt: Timestep control for charge conserving integration in circuit simulation, In this Proceedings

    Google Scholar 

  19. J. Stoer, R. Bulirsch: Introduction to numerical analysis, 2nd ed., Springer Verlag, New York, 1993

    MATH  Google Scholar 

  20. L. F. Shampine: Stiffness and nonstiff differential equation solvers, II: detecting stiffness with Runge-Kutta methods, ACM-TOMS 3 (1977), p. 44–53

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Shichman and D. A. Hodges: Insulated-gate field-effect transistor switching circuits, IEEE J. Solid State Circuits, SC-3 (1968), pp. 285–289

    Article  Google Scholar 

  22. S. Skelboe: Stability properties of backward differentiation multirate formulas, Appl. Numer. Math. 5 (1989), pp. 151–160

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Skelboe and P. U. Anderson: Stability properties of backward Euler multirate formulas, SIAM J. Sci. Stat. Comp. 10 (1989), pp. 1000–1009

    Article  MATH  Google Scholar 

  24. K. Strehmel and R. Weiner: Linear-implizite Runge-Kutta-Methoden und ihre Anwendungen, Teubner, Leipzig, Bd. 127, 1992

    Google Scholar 

  25. R. Weiner, M. Arnold, P. Rentrop, K. Strehmel: Partitioning strategies in Runge-Kutta Type methods, IMA J. Numer. Anal. (1993) 13, pp. 303–319

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Basel AG

About this paper

Cite this paper

Günther, M., Rentrop, P. (1994). Partitioning and Multirate Strategies in Latent Electric Circuits. In: Bank, R.E., Gajewski, H., Bulirsch, R., Merten, K. (eds) Mathematical Modelling and Simulation of Electrical Circuits and Semiconductor Devices. ISNM International Series of Numerical Mathematics, vol 117. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8528-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8528-7_3

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9665-8

  • Online ISBN: 978-3-0348-8528-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics